915 resultados para Massera, José Pedro
Resumo:
Tese de doutoramento, Estudos de Literatura e Cultura (Literatura Oral e Tradicional), Universidade de Lisboa, Faculdade de Letras, 2014
Resumo:
Tese de doutoramento, Filosofia (Filosofia em Portugal), Universidade de Lisboa, Faculdade de Letras, 2014
Resumo:
Tese de doutoramento, Estudos de Literatura e de Cultura (Estudos Comparatistas), Universidade de Lisboa, Faculdade de Letras, 2014
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
Tese de doutoramento, História (História e Cultura do Brasil), Universidade de Lisboa, Faculdade de Letras, 2014
Resumo:
Tese de doutoramento, Belas-Artes (Desenho), Universidade de Lisboa, Faculdade de Belas-Artes, 2015
Resumo:
Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino da Matemática, Universidade de Lisboa, 2015
Resumo:
Tese de mestrado, Neurociências, Faculdade de Medicina, Universidade de Lisboa, 2015
Resumo:
Tese de mestrado. Oncobiologia, Faculdade de Medicina, Universidade de Lisboa, 2015
Resumo:
Emissões - Entre Nós
Resumo:
The concept of explaining the use of an old tool like the Smith chart, using modern tools like MATLAB [1] scripts in combination with e-learning facilities, is exemplified by two MATLAB scripts. These display, step by step, the graphical procedure that must be used to solve the double-stub impedance-matching problem. These two scripts correspond to two different possible ways to analyze this matching problem, and they are important for students to learn by themselves.
Resumo:
In the Sparse Point Representation (SPR) method the principle is to retain the function data indicated by significant interpolatory wavelet coefficients, which are defined as interpolation errors by means of an interpolating subdivision scheme. Typically, a SPR grid is coarse in smooth regions, and refined close to irregularities. Furthermore, the computation of partial derivatives of a function from the information of its SPR content is performed in two steps. The first one is a refinement procedure to extend the SPR by the inclusion of new interpolated point values in a security zone. Then, for points in the refined grid, such derivatives are approximated by uniform finite differences, using a step size proportional to each point local scale. If required neighboring stencils are not present in the grid, the corresponding missing point values are approximated from coarser scales using the interpolating subdivision scheme. Using the cubic interpolation subdivision scheme, we demonstrate that such adaptive finite differences can be formulated in terms of a collocation scheme based on the wavelet expansion associated to the SPR. For this purpose, we prove some results concerning the local behavior of such wavelet reconstruction operators, which stand for SPR grids having appropriate structures. This statement implies that the adaptive finite difference scheme and the one using the step size of the finest level produce the same result at SPR grid points. Consequently, in addition to the refinement strategy, our analysis indicates that some care must be taken concerning the grid structure, in order to keep the truncation error under a certain accuracy limit. Illustrating results are presented for 2D Maxwell's equation numerical solutions.
Resumo:
Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Empreendedorismo e Internacionalização Orientada por Prof. Doutor José Freitas Santos
Resumo:
Oriêntador: Mestre Carlos Pedro