943 resultados para MEMORY SYSTEMS INTERACTION
Resumo:
Humans are especially good at taking another's perspective-representing what others might be thinking or experiencing. This "mentalizing" capacity is apparent in everyday human interactions and conversations. We investigated its neural basis using magnetoencephalography. We focused on whether mentalizing was engaged spontaneously and routinely to understand an utterance's meaning or largely on-demand, to restore "common ground" when expectations were violated. Participants conversed with 1 of 2 confederate speakers and established tacit agreements about objects' names. In a subsequent "test" phase, some of these agreements were violated by either the same or a different speaker. Our analysis of the neural processing of test phase utterances revealed recruitment of neural circuits associated with language (temporal cortex), episodic memory (e.g., medial temporal lobe), and mentalizing (temporo-parietal junction and ventromedial prefrontal cortex). Theta oscillations (3-7 Hz) were modulated most prominently, and we observed phase coupling between functionally distinct neural circuits. The episodic memory and language circuits were recruited in anticipation of upcoming referring expressions, suggesting that context-sensitive predictions were spontaneously generated. In contrast, the mentalizing areas were recruited on-demand, as a means for detecting and resolving perceived pragmatic anomalies, with little evidence they were activated to make partner-specific predictions about upcoming linguistic utterances.
Resumo:
Contemporary software systems are becoming increasingly large, heterogeneous, and decentralised. They operate in dynamic environments and their architectures exhibit complex trade-offs across dimensions of goals, time, and interaction, which emerges internally from the systems and externally from their environment. This gives rise to the vision of self-aware architecture, where design decisions and execution strategies for these concerns are dynamically analysed and seamlessly managed at run-time. Drawing on the concept of self-awareness from psychology, this paper extends the foundation of software architecture styles for self-adaptive systems to arrive at a new principled approach for architecting self-aware systems. We demonstrate the added value and applicability of the approach in the context of service provisioning to cloud-reliant service-based applications.
Resumo:
Mobile and wearable computers present input/output prob-lems due to limited screen space and interaction techniques. When mobile, users typically focus their visual attention on navigating their environment - making visually demanding interface designs hard to operate. This paper presents two multimodal interaction techniques designed to overcome these problems and allow truly mobile, 'eyes-free' device use. The first is a 3D audio radial pie menu that uses head gestures for selecting items. An evaluation of a range of different audio designs showed that egocentric sounds re-duced task completion time, perceived annoyance, and al-lowed users to walk closer to their preferred walking speed. The second is a sonically enhanced 2D gesture recognition system for use on a belt-mounted PDA. An evaluation of the system with and without audio feedback showed users' ges-tures were more accurate when dynamically guided by au-dio-feedback. These novel interaction techniques demon-strate effective alternatives to visual-centric interface de-signs on mobile devices.
Resumo:
This thesis is a study of performance management of Complex Event Processing (CEP) systems. Since CEP systems have distinct characteristics from other well-studied computer systems such as batch and online transaction processing systems and database-centric applications, these characteristics introduce new challenges and opportunities to the performance management for CEP systems. Methodologies used in benchmarking CEP systems in many performance studies focus on scaling the load injection, but not considering the impact of the functional capabilities of CEP systems. This thesis proposes the approach of evaluating the performance of CEP engines’ functional behaviours on events and develops a benchmark platform for CEP systems: CEPBen. The CEPBen benchmark platform is developed to explore the fundamental functional performance of event processing systems: filtering, transformation and event pattern detection. It is also designed to provide a flexible environment for exploring new metrics and influential factors for CEP systems and evaluating the performance of CEP systems. Studies on factors and new metrics are carried out using the CEPBen benchmark platform on Esper. Different measurement points of response time in performance management of CEP systems are discussed and response time of targeted event is proposed to be used as a metric for quality of service evaluation combining with the traditional response time in CEP systems. Maximum query load as a capacity indicator regarding to the complexity of queries and number of live objects in memory as a performance indicator regarding to the memory management are proposed in performance management of CEP systems. Query depth is studied as a performance factor that influences CEP system performance.
Resumo:
The problems of constructing the selfsrtucturized systems of memory of intelligence information processing tools, allowing formation of associative links in the memory, hierarchical organization and classification, generating concepts in the process of the information input, are discussed. The principles and methods for realization of selfstructurized systems on basis of hierarchic network structures of some special class – growing pyramidal network are studied. The algorithms for building, learning and recognition on basis of such type network structures are proposed. The examples of practical application are demonstrated.
Resumo:
The purpose of the paper is to explore the possibility of applying existing formal theories of description and design of distributed and concurrent systems to interaction protocols for real-time multi-agent systems. In particular it is shown how the language PRALU, proposed for description of parallel logical control algorithms and rooted in the Petri net formalism, can be used for the modeling of complex concurrent conversations between agents in a multi-agent system. It is demonstrated with a known example of English auction on how to specify an agent interaction protocol using considered means.
Resumo:
This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
Individuals often imitate each other to fall into the typical group, leading to a self-organized state of typical behaviors in a community. In this paper, we model self-organization in social tagging systems and illustrate the underlying interaction and dynamics. Specifically, we introduce a model in which individuals adjust their own tagging tendency to imitate the average tagging tendency. We found that when users are of low confidence, they tend to imitate others and lead to a self-organized state with active tagging. On the other hand, when users are of high confidence and are stubborn to change, tagging becomes inactive. We observe a phase transition at a critical level of user confidence when the system changes from one regime to the other. The distributions of post length obtained from the model are compared to real data, which show good agreement. © 2011 American Physical Society.
Resumo:
In this Letter, we theoretically and numerically analyze the performance of coherent optical transmission systems that deploy inline or transceiver based nonlinearity compensation techniques. For systems where signal-signal nonlinear interactions are fully compensated, we find that beyond the performance peak the signal-to-noise ratio degradation has a slope of 3 dBSNR/dBPower suggesting a quartic rather than quadratic dependence on signal power. This is directly related to the fact that signals in a given span will interact not only with linear amplified spontaneous emission noise, but also with the nonlinear four-wave mixing products generated from signal-noise interaction in previous (hitherto) uncompensated spans. The performance of optical systems employing different nonlinearity compensation schemes were numerically simulated and compared against analytical predictions, showing a good agreement within a 0.4 dB margin of error.
Resumo:
Systems-of-systems (SoS) are systems resulted from the interaction among other independent constituent systems that collaborate to offer new functionalities towards accomplishing global missions. Each of these constituent systems accomplishes its individual missions and is able to contribute to the achievement of the global missions of the SoS, both being viewed as a set of associated goals. In the perspective of self-aware systems, SoS need to exhibit goal-awareness, i.e., They need to be aware of their own goals and of how their constituent systems contribute to their accomplishment. In this paper, we revisit goal-oriented concepts aiming at identifying and modeling goals at both SoS level and the constituent systems level. Moreover, we take advantage of such goal-oriented models to express the relationship among goals at these levels as well as to define how each constituent system can contribute to the accomplishment of global goals of an SoS. In addition, we shed light on important issues related to goal modeling in self-aware SoS to be addressed in future research.
Resumo:
One of the reasons for using variability in the software product line (SPL) approach (see Apel et al., 2006; Figueiredo et al., 2008; Kastner et al., 2007; Mezini & Ostermann, 2004) is to delay a design decision (Svahnberg et al., 2005). Instead of deciding on what system to develop in advance, with the SPL approach a set of components and a reference architecture are specified and implemented (during domain engineering, see Czarnecki & Eisenecker, 2000) out of which individual systems are composed at a later stage (during application engineering, see Czarnecki & Eisenecker, 2000). By postponing the design decisions in such a manner, it is possible to better fit the resultant system in its intended environment, for instance, to allow selection of the system interaction mode to be made after the customers have purchased particular hardware, such as a PDA vs. a laptop. Such variability is expressed through variation points which are locations in a software-based system where choices are available for defining a specific instance of a system (Svahnberg et al., 2005). Until recently it had sufficed to postpone committing to a specific system instance till before the system runtime. However, in the recent years the use and expectations of software systems in human society has undergone significant changes.Today's software systems need to be always available, highly interactive, and able to continuously adapt according to the varying environment conditions, user characteristics and characteristics of other systems that interact with them. Such systems, called adaptive systems, are expected to be long-lived and able to undertake adaptations with little or no human intervention (Cheng et al., 2009). Therefore, the variability now needs to be present also at system runtime, which leads to the emergence of a new type of system: adaptive systems with dynamic variability.
Resumo:
Police often use facial composites during their investigations, yet research suggests that facial composites are generally not effective. The present research included two experiments on facial composites. The first experiment was designed to test the usefulness of the encoding specificity principle for determining when facial composites will be effective. Instructions were used to encourage holistic or featural cues at encoding. The method used to construct facial composites was manipulated to encourage holistic or featural cues at retrieval. The encoding specificity principle suggests that an interaction effect should occur. If the same cues are used at encoding and retrieval, better composites should be constructed than when the cues are not the same. However, neither the expected interaction nor the main effects for encoding and retrieval were significant. The second study was conducted to assess the effectiveness of composites generated by two different facial composite construction systems, E-Fit and Mac-A-Mug Pro. These systems differ in that the E-Fit system uses more sophisticated methods of composite construction and may construct better quality facial composites. A comparison of E-Fit and Mac-A-Mug Pro composites demonstrated that E-Fit composites were of better quality than Mac-A-Mug Pro composites. However, neither E-Fit nor Mac-A-Mug Pro composites were useful for identifying the target person from a photograph lineup. Further, lineup performance was at floor level such that both E-Fit and Mac-A-Mug Pro composites were no more useful than a verbal description. Possible limitations of the studies are discussed, as well as suggestions for future research. ^
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^
Resumo:
A methodology for formally modeling and analyzing software architecture of mobile agent systems provides a solid basis to develop high quality mobile agent systems, and the methodology is helpful to study other distributed and concurrent systems as well. However, it is a challenge to provide the methodology because of the agent mobility in mobile agent systems.^ The methodology was defined from two essential parts of software architecture: a formalism to define the architectural models and an analysis method to formally verify system properties. The formalism is two-layer Predicate/Transition (PrT) nets extended with dynamic channels, and the analysis method is a hierarchical approach to verify models on different levels. The two-layer modeling formalism smoothly transforms physical models of mobile agent systems into their architectural models. Dynamic channels facilitate the synchronous communication between nets, and they naturally capture the dynamic architecture configuration and agent mobility of mobile agent systems. Component properties are verified based on transformed individual components, system properties are checked in a simplified system model, and interaction properties are analyzed on models composing from involved nets. Based on the formalism and the analysis method, this researcher formally modeled and analyzed a software architecture of mobile agent systems, and designed an architectural model of a medical information processing system based on mobile agents. The model checking tool SPIN was used to verify system properties such as reachability, concurrency and safety of the medical information processing system. ^ From successful modeling and analyzing the software architecture of mobile agent systems, the conclusion is that PrT nets extended with channels are a powerful tool to model mobile agent systems, and the hierarchical analysis method provides a rigorous foundation for the modeling tool. The hierarchical analysis method not only reduces the complexity of the analysis, but also expands the application scope of model checking techniques. The results of formally modeling and analyzing the software architecture of the medical information processing system show that model checking is an effective and an efficient way to verify software architecture. Moreover, this system shows a high level of flexibility, efficiency and low cost of mobile agent technologies. ^