993 resultados para Lattice-binary parameter
Resumo:
Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2 lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (similar to 90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices. (C) 2008 Optical Society of America.
Resumo:
The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.
The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.
Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.
Resumo:
In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
We systematically investigate the square-lattice dielectric photonic crystals that have been used to demonstrate flat slab imaging experimentally. A right-handed Bloch mode is found in the left-handed frequency region by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Using the multiple scattering theory, numerical simulations demonstrate that the left-handed mode and the right-handed mode are excited simultaneously by a point source and result in two kinds of transmitted waves. Impacted by the evanescent waves, superposition of these transmitted waves brings on complicated near field distributions such as the so-called imaging and its disappearance.
Resumo:
Optical properties of a two-dimensional square-lattice photonic crystal are systematically investigated within the partial bandgap through anisotropic characteristics analysis and numerical simulation of field pattern. Using the plane-wave expansion method and Hellmann-Feynman theorem, the relationships between the incident and refracted angles for both phase and group velocities are calculated to analyze light propagation from air to photonic crystals. Three kinds of flat slab focusing are summarized and demonstrated by numerical simulations using the multiple scattering method. (c) 2007 Optical Society of America
Resumo:
In this paper we theoretically investigate a photonic crystal with dielectric rods in a honeycomb lattice. Two left-handed frequency regions are found in the second and third photonic band by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Subwavelength imaging by the photonic crystal flat lens are systematically studied by numerical simulations using the multiple scattering method. Different from the photonic crystals with noncircular dielectric rods in air, this structure is almost isotropic at the optimal frequency for superlensing. As a comparison, flat slab focusing is also demonstrated at other frequencies in the two left-handed regions. (c) 2006 Elsevier Ltd. All rights reserved.