993 resultados para LIFETIME MEASUREMENTS
Resumo:
Dehydroaromatization of CH4 with 2% CO2 on 6Mo/MCM-22 in a 100-h lifetime test was carried out at 993 K, atmospheric pressure and 1500 mL/gh. The duration of the lifetime test can be divided into an induction stage, stable stage and deactivation stage on the basis of the selectivities of hydrocarbons and coke. The characteristics of deposited coke with different time onstream were studied using TPO and TG techniques. There were two peaks corresponding to two kinds of coke recorded in TPO profiles, and the oxidation temperature of coke shifted to higher values with less hydrogen content with the increase of coke deposits. BET and Benzene-TPD techniques were employed to study the variation of specific surface area of the external and micropore surface versus time onstream. With the accumulation of coke deposits, although the pores became partially blocked and the internal surface decreased, methane could still enter the channel and was converted to benzene with shape selectivity until a critical value of coke deposition was reached.
Resumo:
Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.
Resumo:
A review based on 94 cited original papers describes recent achievements in application of different electrochemical detection in flow analysis, injection techniques of flow analysis, liquid chromatography and capillary electrophoresis.
Resumo:
Reducing uncertainties in the estimation of land surface evapotranspiration (ET) from remote-sensing data is essential to better understand earth-atmosphere interactions. This paper demonstrates the applicability of temperature-vegetation index triangle (T-s-VI) method in estimating regional ET and evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy) from MODIS/Terra and MODIS/Aqua products in a semiarid region. We have compared the satellite-based estimates of ET and EF with eddy covariance measurements made over 4 years at two semiarid grassland sites: Audubon Ranch (AR) and Kendall Grassland (KG). The lack of closure in the eddy covariance measured surface energy components is shown to be more serious at MODIS/Aqua overpass time than that at MODIS/Terra overpass time for both AR and KG sites. The T-s-VI-derived EF could reproduce in situ EF reasonably well with BIAS and root-mean-square difference (RMSD) of less than 0.07 and 0.13, respectively. Surface net radiation has been shown to be systematically overestimated by as large as about 60 W/m(2). Satisfactory validation results of the T-s-VI-derived sensible and latent heat fluxes have been obtained with RMSD within 54 W/m(2). The simplicity and yet easy use of the T-s-VI triangle method show a great potential in estimating regional ET with highly acceptable accuracy that is of critical significance in better understanding water and energy budgets on the Earth. Nevertheless, more validation work should be carried out over various climatic regions and under other different land use/land cover conditions in the future.
Resumo:
The photophysical properties of the complex Sm(PM)(3)(TP)(2) [PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone, TP = triphenyl phosphine oxide] are determined in crystal state, and energy transfer process is modeled for ligands to center Sm(III) ion. The characteristic luminescence of Sm(III) is sensitized by PM and TP, and most of transitions from excited state (4)G(5/2) of Sm3+ are detected.
Resumo:
in this communication, a novel Er3+ complex Er(PT)(3)TPPO [PT = 1-phenyl-3-methyl-4-tert-butylbenzoyl-5-pyrazolone, TPPO = triphenyl phosphine oxide] is successfully synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Its optical properties and the energy transfer process from the ligand PT to the Er3+ ion are investigated, the typical near-infrared (NIR) luminescence (centered at around 1530 nm) is attributed to the I-4(13/2) -> I-4(15/2) transition of Er3+ ion which results from the efficient energy transfer from PT to Er3+ ion (an antenna effect). The wider full width at half maximum (78 nm) peaked at 1530 nm in the emission spectrum and the Judd-Ofelt theory calculation on the radiative properties suggest that Er(PT)(3)TPPO should be a promising candidate for tunable lasers and planar optical amplifiers.
Resumo:
For a sphere electrode enclosed in finite-volume electrolyte, the measured current will deviate from the result predicted by the semi-infinite diffusion theory after some time. By random-walk simulation, we compared this time to the one needed for diffusion layer to reach electrolyte boundary, and revealed a clear signal delay of electrochemical current. Further we presented a quantitative description of this delay time. The simulation results suggested that the semi-infinite diffusion theory can even be applied when the theoretical diffusion layer grows to 1.28 electrolyte thicknesses, with an accuracy better than 0.5%. We attributed this time delay to the molecules' finite propagation velocity. Finally, we discussed how this delay can influence and facilitate the following electrochemical detection towards the nanometer and single-cell scale.
Resumo:
The characteristics of intermediates of bacteriorhodopsin (bR) can be verified by chemical modification of its surroundings. CeO2 nanoparticles, which were obtained using water-in-oil (W/O) microemulsion and calcined at various temperatures, were used as chemical additive for the modification of bR. X-ray diffraction (XRD) shows that the mean particle sizes for the samples calcined at 500 and 800 degrees C are approximately 10 and 30 nm, respectively. We prepared CeO2 nanoparticle modified poly(vinyl alcohol) (bR-PVA) films with an optical density of about 1.5 at the ground state. It is observed that the lifetime of the Wintermediate for the modified films is prolonged compared with that of the unmodified ones, and the lifetime increases with decreasing particle size. A probable mechanism, which is likely to involve effective molecular interactions between the CeO2 nanoparticles and the bR molecules, is discussed. The hydroxyl groups, which might arise from the interaction between the nanoparticles and the surrounding water molecules, help to lower the ability of the Schiff base of uptaking protons in the Wintermediate. The results indicate that controlling the interactions between biomolecules and various nanomaterials would enlarge the functionality and the range of the application of nanoparticles.
Resumo:
A method is developed to estimate the coverage of an electropolymerizable aniline-analogue monolayer (mixture of 2- and 3-aminophenols, 2/3-ATP) by measuring the charge capacitance of the electrode (theta = 81%). The technique of filling the uncovered area (defect sites) of the aniline-analogue monolayer with alkanethiols with long alkane chains (1-decanethiol, 1-DT) has been used to determine the coverage. The dielectric constant (permittivity) of the PANI-analogue monolayer was determined to 8.4. Adsorption kinetics of 1-DT was also studied, and the value of the rate constant of the secondary adsorption was measured to 0.9 mol(-1) dm(3) s(-1).
Resumo:
A series of silica-supported 12-silicotungstic acid catalysts (H4SiW12O40, abbreviated as HSiW), modified with various loadings of Teflon (HSiW/SiO2-Teflon), were prepared by an impregnation method. The surface properties of the catalysts were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), BET, infrared (IR) spectroscopy, NH3-TPD and the Drop Shape Analysis (DSA). SEM results combined with energy-dispersive X-ray (EDX) measurements of HSiW/SiO2-Teflon revealed that F-compound (Teflon) is effectively coated on the catalyst surface. The contact angles for water and oil of 50 wt% HSiW/SiO2 and HSiW/SiO2-Teflon indicate that HSiW/SiO2-Teflon catalyst enhances not only the surface hydrophobicity but also the surface lipophobicity by means of the addition of Teflon. Silica-supported 12-silicotungstic acid modified with Teflon exhibits higher C-8(=) selectivity and longer lifetime than that of silica-supported 12-silicotungstic acid in isobutene oligomerization. Thus, surface-appropriate lipophobicity of catalysts may be effective for decreasing the interaction between coke precursors and the catalyst surface and for removing deposited coke more easily.
Resumo:
Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.
Resumo:
The sensitized fluorescence intensity of terbium ion can be notably enhanced when the Tb3+-fleroxacin complex is exposed to 365 nm light. By the measurements of fluorescence spectra, phosphorescence spectra, fluorescence quantum yield and fluorescence lifetime of the system, it is proved that irradiation makes the complex undergo a photochemical reaction and produces a new terbium complex which is more favorable to intramolecular energy transfer. The mechanism of the photochemical fluorescence enhancement was discussed.