872 resultados para Hypergraphs and metric spaces.
Resumo:
2000 Mathematics Subject Classification: 06A06, 54E15
Resumo:
2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.
Resumo:
2000 Mathematics Subject Classification: 47H10, 54E15.
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано.
Resumo:
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа Gδ -гъсто Московско подпространство, тогава X е Московско пространство.
Resumo:
In this paper, we present one approach for extending the learning set of a classification algorithm with additional metadata. It is used as a base for giving appropriate names to found regularities. The analysis of correspondence between connections established in the attribute space and existing links between concepts can be used as a test for creation of an adequate model of the observed world. Meta-PGN classifier is suggested as a possible tool for establishing these connections. Applying this approach in the field of content-based image retrieval of art paintings provides a tool for extracting specific feature combinations, which represent different sides of artists' styles, periods and movements.
Resumo:
2010 Mathematics Subject Classification: Primary 65D30, 32A35, Secondary 41A55.
Resumo:
We obtain new combinatorial upper and lower bounds for the potential energy of designs in q-ary Hamming space. Combined with results on reducing the number of all feasible distance distributions of such designs this gives reasonable good bounds. We compute and compare our lower bounds to recently obtained universal lower bounds. Some examples in the binary case are considered.
Resumo:
2000 Mathematics Subject Classification: Primary 40C99, 46B99.
Resumo:
Video streaming via Transmission Control Protocol (TCP) networks has become a popular and highly demanded service, but its quality assessment in both objective and subjective terms has not been properly addressed. In this paper, based on statistical analysis a full analytic model of a no-reference objective metric, namely pause intensity (PI), for video quality assessment is presented. The model characterizes the video playout buffer behavior in connection with the network performance (throughput) and the video playout rate. This allows for instant quality measurement and control without requiring a reference video. PI specifically addresses the need for assessing the quality issue in terms of the continuity in the playout of TCP streaming videos, which cannot be properly measured by other objective metrics such as peak signal-to-noise-ratio, structural similarity, and buffer underrun or pause frequency. The performance of the analytical model is rigidly verified by simulation results and subjective tests using a range of video clips. It is demonstrated that PI is closely correlated with viewers' opinion scores regardless of the vastly different composition of individual elements, such as pause duration and pause frequency which jointly constitute this new quality metric. It is also shown that the correlation performance of PI is consistent and content independent. © 2013 IEEE.
Resumo:
2000 Mathematics Subject Classification: 05B25, 51E20.
Resumo:
2000 Mathematics Subject Classification: 54H25, 47H10.
Resumo:
2000 Mathematics Subject Classification: 35B40, 35L15.