926 resultados para FLEXURAL STRENGHT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim. This work tested the effect of the addition of Al2O3/GdAlO3 longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Methods: Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina - glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes - alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n = 10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (alpha = 5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Results. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. Conclusions. The addition of 17 vol% of Al2O3/GdAlO3 longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of high-density biopolyethylene (HDBPE) obtained from ethylene derived from sugarcane ethanol and curaua fibers were formed by first mixing in an internal mixer followed by thermopressing. Additionally, hydroxyl-terminated polybutadiene (LHPB), which is usually used as an impact modifier, was mainly used in this study as a compatibilizer agent. The fibers, HDBPE and LHPB were also compounded using an inter-meshing twin-screw extruder and, subsequently, injection molded. The presence of the curaua fibers enhanced some of the properties of the HDBPE, such as its flexural strength and storage modulus. SEM images showed that the addition of LHPB improved the adhesion of the fiber/matrix at the interface, which increased the impact strength of the composite. The higher shear experienced during processing probably led to a more homogeneous distribution of fibers, making the composite that was prepared through extruder/injection molding more resistant to impact than the composite processed by the internal mixer/thermopressing. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using numerical models that couple surface processes, flexural isostasy, faulting and the thermal effects of rifting, we show that fault-bounded escarpments created at rift flanks by mechanical unloading and flexural rebound have little potential to "survive" as retreating escarpments if the lower crust under the rift flank is substantially stretched. In this configuration, a drainage divide that persists through time appears landward of the initial escarpment in a position close to a secondary bulge that is created during the rifting event at a distance that depends on the flexural rigidity of the upper crust. Moreover, the migration of the escarpment to the secondary bulge occurs when the pre-rift topography dips landward, otherwise the evolution of the escarpment is guided by the pre-existing inland drainage divide. To illustrate this new mechanism for the evolution of passive margins, we study the examples of Southeastern Australia and Southeastern Brazil. We propose that a pre-existing inland drainage divide with rift related flank uplift can produce the double drainage divide observed in Southeastern Australia. On the other hand, we conclude that it is possible that the Serra do Mar escarpments on the Southeastern Brazilian margin originated as a secondary flexural bulge during rifting that persisted through time. In both cases, the retreating escarpment scenario is unlikely and the present-day margin morphology can be explained as resulting from rift-related vertical motions alone, without requiring significant post-rift "rejuvenation".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although therapy with tumor necrosis factor-alpha inhibitors (anti-TNF) provides beneficial effects in different immune inflammatory disorders, paradoxical cases of anti-THE-induced psoriasis have increasingly been reported, mostly in the setting of rheumatologic diseases. To date, less than 50 cases of infliximab-induced psoriasis in inflammatory bowel disease patients have been described. The present report was aimed at describing two new cases of infliximab-induced psoriasis during therapy for Crohn's disease and at carrying out a review on this intriguing phenomenon. (C) 2011 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: This study evaluated the effect of an alkaline solution and two 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer agents on bond strength to zirconia (yttria-stabilized tetragonal zirconium polycrystal [Y-TZP]) through the shear bond strength (SBS) test. Materials and Methods: Sixty square-shaped Y-TZP samples were embedded in an acrylic resin mold, polished, and randomly assigned to one of six groups (n=10) according to treatment surface: group CR, no treatment (control); group NaOH, 0.5 M NaOH; group AP, Alloy Primer; group ZP, Z-Primer Plus; group NaOH-AP, 0.5 M NaOH + Alloy Primer; and group NaOH-ZP, 0.5 M NaOH + Z-Primer Plus. The resin cement (Rely X U100) was applied inside a matrix directly onto the Y-TZP surface, and it was light-cured for 40 seconds. The samples were stored in distilled water at 37 C for 24 hours prior to the test, which was performed in a universal machine at a crosshead-speed of 0.5 mm/min. The data were analyzed by one-way analysis of variance and Tukey tests (p<0.05). Light stereomicroscopy and scanning electron microscopy were used to assess the surface topography and failure mode. Results: The SBS was significantly affected by the chemical treatment (p<0.0001). The AP group displayed the best results, and the use of NaOH did not improve SBS results relative to either AP or ZP. The samples treated with Alloy Primer displayed mainly mixed failures, whereas those conditioned with Z-Primer Plus or with 0.5 M NaOH presented a balanced distribution of adhesive and mixed failure modes. Conclusions: The use of a NaOH solution may have modified the reactivity of the Y-TZP surface, whereas the employment of a MDP/6-4-vinylbenzyl-n-propyl amino-1,3,5-triazine2,4-dithione-based primer enhanced the Y-TZP bond strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm(-1) to 800 J m(-1) and 1000 J m(-1), showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), was characterized through decay of free oscillations of the sample in the flexural vibration mode. The spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but if there is some relaxation, this only occurs in special cases such as low concentration of zirconium or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging treatment hardens the material and reduces its ductility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si è voluta porre l’attenzione sulla suscettibilità alle alte temperature delle resine che li compongono. Lo studio del comportamento alle alte temperature delle resine utilizzate per l’applicazione dei materiali compositi è risultato un campo di studio ancora non completamente sviluppato, nel quale c’è ancora necessità di ricerche per meglio chiarire alcuni aspetti del comportamento. L’analisi di questi materiali si sviluppa partendo dal contesto storico, e procedendo successivamente ad una accurata classificazione delle varie tipologie di materiali compositi soffermandosi sull’ utilizzo nel campo civile degli FRP (Fiber Reinforced Polymer) e mettendone in risalto le proprietà meccaniche. Considerata l’influenza che il comportamento delle resine riveste nel comportamento alle alte temperature dei materiali compositi si è, per questi elementi, eseguita una classificazione in base alle loro proprietà fisico-chimiche e ne sono state esaminate le principali proprietà meccaniche e termiche quali il modulo elastico, la tensione di rottura, la temperatura di transizione vetrosa e il fenomeno del creep. Sono state successivamente eseguite delle prove sperimentali, effettuate presso il Laboratorio Resistenza Materiali e presso il Laboratorio del Dipartimento di Chimica Applicata e Scienza dei Materiali, su dei provini confezionati con otto differenti resine epossidiche. Per valutarne il comportamento alle alte temperature, le indagini sperimentali hanno valutato dapprima le temperature di transizione vetrosa delle resine in questione e, in seguito, le loro caratteristiche meccaniche. Dalla correlazione dei dati rilevati si sono cercati possibili legami tra le caratteristiche meccaniche e le proprietà termiche delle resine. Si sono infine valutati gli aspetti dell’applicazione degli FRP che possano influire sul comportamento del materiale composito soggetto alle alte temperature valutando delle possibili precauzioni che possano essere considerate in fase progettuale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’utilizzo di materiali compositi come i calcestruzzi fibrorinforzati sta diventando sempre più frequente e diffuso. Tuttavia la scelta di nuovi materiali richiede una approfondita analisi delle loro caratteristiche e dei loro comportamenti. I vantaggi forniti dall’aggiunta di fibre d’acciaio ad un materiale fragile, quale il calcestruzzo, sono legati al miglioramento della duttilità e all'aumento di assorbimento di energia. L’aggiunta di fibre permette quindi di migliorare il comportamento strutturale del composito, dando vita ad un nuovo materiale capace di lavorare non solo a compressione ma anche in piccola parte a trazione, ma soprattutto caratterizzato da una discreta duttilità ed una buona capacità plastica. Questa tesi ha avuto come fine l’analisi delle caratteristiche di questi compositi cementizi fibrorinforzati. Partendo da prove sperimentali classiche quali prove di trazione e compressione, si è arrivati alla caratterizzazione di questi materiali avvalendosi di una campagna sperimentale basata sull’applicazione della norma UNI 11039/2003. L’obiettivo principale di questo lavoro consiste nell’analizzare e nel confrontare calcestruzzi rinforzati con fibre di due diverse lunghezze e in diversi dosaggi. Studiando questi calcestruzzi si è cercato di comprendere meglio questi materiali e trovare un riscontro pratico ai comportamenti descritti in teorie ormai diffuse e consolidate. La comparazione dei risultati dei test condotti ha permesso di mettere in luce differenze tra i materiali rinforzati con l’aggiunta di fibre corte rispetto a quelli con fibre lunghe, ma ha anche permesso di mostrare e sottolineare le analogie che caratterizzano questi materiali fibrorinforzati. Sono stati affrontati inoltre gli aspetti legati alle fasi della costituzione di questi materiali sia da un punto di vista teorico sia da un punto di vista pratico. Infine è stato sviluppato un modello analitico basato sulla definizione di specifici diagrammi tensione-deformazione; i risultati di questo modello sono quindi stati confrontati con i dati sperimentali ottenuti in laboratorio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field and very important for structures like bridges subject to dynamic loading. An historical point of view of what done in the field is provided and then the project is presented. The project presents an application of the Digital Image Correlation (DIC) technique for the detection of cracks at the surface of concrete prisms (500mmx100mmx100mm) subject to flexural loading conditions (Four Point Bending test). The technique provide displacement measurements of the region of interest and from this displacement field information about crack mouth opening (CMOD) are obtained and related to the applied load. The evolution of the fracture process is shown through graphs and graphical maps of the displacement at some step of the loading process. The study shows that it is possible with the DIC system to detect the appearance and evolution of cracks, even before the cracks become visually detectable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'obiettivo della tesi è stato quello di indagare il complesso problema della vulnerabilità sismica dei ponte in muratura ad arco utilizzando modelli semplificati. Dopo una descrizione dei materiali da costruzione impiegati nella realizzazione e dei principali elementi dei un ponti in muratura, si è indirizzato lo studio di un ponte ad arco situato nel comune di San Marcello Pistoiese. Viene mostrato un modello numerico che permette di descrivere il comportamento strutturale del ponte sotto azione sismica e di valutare la capacità di carico del ponte sottoposto ad una azione trasversale. In un secondo momento viene descritta la realizzazione di un modello in scala del ponte, che è stato sottoposto a prove distruttive effettuate per valutare la capacità di carico del ponte rispetto ad un ipotetica azione orizzontale. Si è cercato poi di inquadrare il problema in un modello teorico che faccia riferimento all'analisi limite. Esso descrive un cinematismo di collasso a telaio che prende spunto dal quadro fessurativo del modello in muratura. Infine sono stati presentati modelli FEM numerici in ordine di complessità crescente, cercando di inquadrare il comportamento meccanico del prototipo del ponte. Tre tipi di modelli sono rappresentati: un telaio incernierato alle estremità costituito da elementi beam con resistenza alla flessione . Il secondo tipo è costituito da una reticolare equivalente che mima lo schema del ponte ed è formato solo da bielle. Infine, il terzo tipo cerca di descrivere l'intero modello con elementi tridimensionali.