Longitudinal bar buckling behavior


Autoria(s): Moroder, Daniel
Contribuinte(s)

Ceccoli, Claudio

Data(s)

20/03/2008

Resumo

Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.

Formato

application/pdf

Identificador

http://amslaurea.unibo.it/94/1/Longitudinal_bar_buckling_behaviour.pdf

Moroder, Daniel (2008) Longitudinal bar buckling behavior. [Laurea specialistica], Università di Bologna, Corso di Studio in Ingegneria civile [LS-DM509] <http://amslaurea.unibo.it/view/cds/CDS0452/>

Relação

http://amslaurea.unibo.it/94/

[1] Tanaka, H (1990). “Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns.” PhD Thesis, University of Canterbury, Christchurch, New Zealand. [2] Restrepo, J. I. (2003). SE 207 Special Topics in Structural Engineering: “Advanced Concrete Mechanics”, Class Notes, University of California at San Diego. [3] Dodd, L.L., and Restrepo, J. I. (1994). “Model for Predicting Cyclic Behavior of Reinforcing Steel.” Journal of Structural Engineering, Vol. 121, No. 3, August, pp. 433-445. [4] Pantazopoulou, S.J. (1998). “Detailing for Reinforcement Stability in RC Members.” Journal of Structural Engineering, Volume 124, Issue 6, June, pp. 623-632. [5] Papia, M., Russo, G., and Zingone, G. (1988). “Instability of Longitudinal Bars in RC Columns.” Journal of Structural Engineering. Vol. 114, no. 2, Feb., pp. 445-461. [6] Moehle, J. (1985). “Confinement Effectiveness of Crossties In Rc.” Journal of structural engineering, 111(10), 2105-2120. [7] Russo, G., (1988). “Buckling Model for Reinforcing Bars.” International Journal of Mechanical Sciences, Vol. 30, No. 1, pp. 3-11. [8] Bae, S., Mieses, A.M., and Bayrak, O. (2005). “Inelastic Buckling of Reinforcing Bars.” Journal of Structural Engineering, Vol. 131, No. 2, February, pp. 314-321. [9] Scribner, C.S. (1986). “Reinforcement Buckling in Reinforced Concrete Flexural Members.” ACI Journal Proceedings, Vol. 83, no. 6, November. pp. 966-973. [10] Mander, J. (1988). “Observed Stress-Strain Behavior of Confined Concrete.” Journal of structural engineering, 114(8), 1827-1849. [11] Mander, J. (1988). “Theoretical Stress-Strain Model for Confined Concrete.” Journal of structural engineering, 114(8), 1804-1826. [12] Bresler, B., and Gilbert, P.H., (1961). “Tie Requirements for Reinforced Concrete Columns.” ACI Journal Proceedings, Vol. 58, November, pp. 555-570 [13] Monti, G., and Nuti, C. (1992). “Nonlinear Cyclic Behavior of Reinforcing Bars Including Buckling.” Journal of Structural Engineering. Vol. 118, no. 12, Dec., pp. 3268-3284. [14] Sheikh, S. (1980). “Strength And Ductility Of Tied Concrete Columns.” 106(5), 1079-1102. [15] Sheikh, S. (1982). “Analytical Model For Concrete Confinement In Tied Columns.” Journal of the Structural Division, 108(12), 2703-2722. [16] Saatcioglu, M. (1995). “Confined columns under eccentric loading.” Journal of structural engineering, 121(11), 1547-1556. [17] Cusson, D. (1995). “Stress-strain model for confined high-strength concrete.” Journal of structural engineering, 121(3), 468-477. [18] American Concrete Institute (1992). “Building Code Requirements for Structural Concrete”. ACI 318-89. [19] Hose, Y. D. (2001). “Seismic performance and failure behavior of plastic hinge regions in flexural bridge columns.” PhD dissertation, Dept. of Structural Engineering, Univ. of California, San Diego. [20] M.J.N. Priestley, F. Seible, G.M. Calvi. “Seismic design and retrofit of bridges”. New York: John Wiley, 1996. [21] Hegemier, G. (2006). SE 207 Special Topics in Structural Engineering: “FRP Rehabilitation of Structures”, Class Notes, University of California at San Diego. [22] Priestly, J.N. Personal Notes, courtesy of Hegemier, G. [23] Shanley, F.R., (1946). “The Column Paradox.” Journal of the Aeronautical Sciences, Vol. 13, No. 12, December, p. 678. [24] Johnston, B.G., (1961). “Buckling Behavior Above the Tangent Modulus Load.” Journal of the Engineering Mechanics Division, Proceedings of the ASCE, Vol. 87, No. EM 6, December, pp. 79-99 [25] Title of the book unknown. Chap. 9: Compression Members, Art 9.6: “Column Theories for inelastic buckling”, 280-287. [26] Shanley, F.R., (1947). “Inelastic Column Theory.” Journal of the Aeronautical Sciences, Vol. 14, No. 5, May, pp. 261-267. [27] Duberg, J.E., Wilder III, T.W. (1950). “Column Behavior in the Plastic Stress Range.“ Journal of Aero Science, Vol. 17, No. 6, June 1950, p. 323. [28] Osgood, W.R., (1935). “The Double-Modulus Theory of Column Action.” Civil Engineering, Vol. 5, No. 3, March, pp. 173-175. [29] Cosenza, E. and Prota, A. (2006). “Experimental behavior and numerical modeling of smooth steel bars under compression.” Journal of Earthquake Engineering, Vol. 10, No. 3, pp. 313–329. [30] Kato, D., Kanaya, J., Wakatsuki, K. (1995). “Buckling strains of main bars in reinforced concrete members.” Proc., 5th East Asia and Pacific. Conference in Structural Engineering and Construction EASEC-5, Gold Coast, Australia, 699-704. [31] Dhakal, R.P., and Maekawa, K. (2002). “Modeling for Postyield Buckling of Reinforcement.” Journal of Structural Engineering, Vol. 128, No. 9, Sept., pp. 1139-1147. [32] Suda, K., Murayama, Y., Ichinomiya, T., and Shimbo, H. (1996). ‘‘Buckling behavior of longitudinal reinforcing bars in concrete column subjected to reverse lateral loading.’’ Proc., 11th World Conf. on Earthquake Engineering, Acapulco, Mexico, Paper No. 1753. [33] Gomes, A., and Appleton, J. (1997). “Nonlinear Cyclic Stress-Strain Relationship of Reinforcing Bars Including Buckling.” Engineering Structures, Vol. 19, No. 10, pp. 822–826. [34] Rodriguez, M.E., Botero, J.C., and Villa, J. (1999). “Cyclic Stress-Strain Behavior of Reinforcing Steel Including the Effect of Buckling.” Journal of Structural Engineering, Vol. 125, No. 6, June, pp. 605-612. [35] Dhakal, R. P. (2000). ‘‘Enhanced fiber model in highly inelastic range and seismic performance assessment of reinforced concrete.’’ Doctoral Dissertation. Dept. of Civil Engineering, Univ. of Tokyo, Japan. [36] Irawan, P., and Maekawa, K. (1994). ‘‘Three-dimensional analysis of strength and deformation of confined concrete columns.’’ Concr. Library Int., 24, 47–70. [37] Maekawa, K. and Okamura, H. (1983). “The Deformational Behavior and Constitutive Equation of Concrete Using the elasto-plasto and fracture model.” Journal of the Faculty of Engineering, The University of Tokyo, Vol. XXXVII, No. 2 [38] Moyer, M.J., and Kowalsky, M.J. (2003). “Influence of Tension Strain on Buckling of Reinforcement in Concrete Columns.” ACI Structural Journal, Vol. 100, no. 1, January, pp. 75-85. [39] Mander, J.B.; Priestly, M.J.N.; Park, R. (1984). “Seismic Design of Bridge Piers.”. Research Report 84-2, University of Canterbury, Christchurch, New Zealand. [40] M.J. Kowalsky, M.J.N. Priestley, F. Seible (1996). “Flexural Behavior of Lightweight Concrete Columns under Seismic Conditions.” Structural System Research Report SSRP-96/08, Department of Structural Engineering, University of California, San Diego. [41] Rodriguez, M.E., Botero, J.C., and Villa, J. (1999). “Cyclic Stress-Strain Behavior of Reinforcing Steel Including the Effect of Buckling.” Journal of Structural Engineering, Vol. 125, No. 6, June, pp. 605-612. [42] Suda, K., Murayama, Y., Ichinomiya, T. and Shimbo, H. (1996). “Buckling Behavior of Longitudinal Reinforcing Bars in Concrete Column Subjected to Reverse Lateral Loading.” Eleventh World Conference on Earthquake Enginnering, Paper No. 1753. [43] Berry, M.P., and Eberhard, M.O. (2005). “Practical Performance Model for Bar Buckling.” Journal of Structural Engineering, Vol. 131, No. 7, July, pp. 1060-1070. [44] Ooya, H. and Kato, D. (1994). “Experimental study on buckling behavior of intermediate longitudinal bars in R-C members." Transactions of the Japan Concrete Institute, Vol. 16 [45] Kato, D. and Ooya, H. (1993). “Experimental study on buckling behavior of intermediate longitudinal bars in RC members.” Transactions of the Japan Concrete Institute, Vol. 15, pp. 431-438. [46] Kato, D. and Ooya, H. (1993). “Buckling behaviors of steel bars in RC columns with high strength materials.” Journal of Structural and Construction Engineering, Vol. 453, pp. 141-147 (in Japanese). [47] New Zealand Standard: Code of practice for the design of concrete structures (NZS 3101), 1982. [48] Liners, D. (1987). “Micro cracking of Concrete under Compression and its Influence on Tensile Strength, Materials and Structures, Vol. 20, pp. 111-116. [49] Bayrak, O., and Sheikh, S.A. (2001). “Plastic Hinge Analysis.” Journal of Structural Engineering, Vol. 127, No. 9, September, pp. 1092-1100. [50] Filippou, F. C., Popov, E. P. and Bertero, V. V. “Effects of bond deterioration on hysteretic behavior of reinforced concrete joints”. Earthquake Engineering Research Center, Report UCB/EERC-83/19,University of California, Berkeley, 1983. [51] Mau, S.T., and El-Mabsout M. (1989). “Inelastic Buckling of Reinforcing Bars.” Journal of Engineering Mechanics, Vol. 115, No. 1, January, pp. 1-17. [52] Mau, S.T. (1990). “Effect of Tie Spacing on Inelastic Buckling of Reinforcing Bars.” ACI Structural Journal, Vol. 87, no. 6, November, pp. 671-677. [53] Mau, S.T., (1989). “Buckling and Post buckling Analyses of Struts with Discrete Supports.” Journal of Engineering Mechanics, Vol. 115, No. 4, April, pp. 721-739. [54] J.G. Teng et al. ”FRP-strengthened RC structures”. New York: Wiley, 2002. [55] Yuk Hon Chai, M.J. Nigel Priestley, Frieder Seible (1991). “Flexural retrofit of circular reinforced concrete bridge columns by steel jacketing : experimental studies”. SSRP-91/06, University of California at San Diego. [56] Mieses, A.M. (2002). “Inelastic Buckling of Concrete Reinforcement Bars under Monotonic Uniaxial Compressive Loading.” Master of Science in Engineering Thesis, University of Texas at Austin. [57] Chang, G.A. and Mander, J.B. (1994). “Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I – Evaluation of Seismic Capacity.” Technical Report NCEER-94-0006, State University of New York at Buffalo. [58] Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. et al. (2006). “Open System for Earthquake Engineering Simulation User Command-Language Manual.” Pacific Earthquake Engineering Research Center, University of California, Berkeley. [59] Saouma, Victor E. (1999). “Matrix Structural Analysis with an Introduction to Finite Elements.” Dept. of Civil Environmental and Architectural Engineering University of Colorado, Boulder. [60] Clarke, M.J.; Hancock G.J (1990). “A study of incremental-iterative strategies for non-linear analysis.” International Journal for numerical methods in engineering, Vol. 29, 1365-1391.

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Instabilità, barre longitudinali, confinamento da staffe, collasso di colonne in cemento armato, strutture in cemento armato, buckling,longitudinal bar, tie confinement, failure of RC members. #scuola :: 843884 :: Ingegneria e Architettura #cds :: 0452 :: Ingegneria civile [LS-DM509] #sessione :: terza
Tipo

PeerReviewed