998 resultados para FINITE TOTAL CURVATURE
Resumo:
Previous studies assessed the outcome of ankle arthrodesis (AA) and total ankle replacement (TAR) surgeries; however, the extent of postoperative recovery towards bilateral gait mechanics (BGM) is unknown. We evaluated the outcome of the two surgeries at least 2 years post rehabilitation, focusing on BGM. 36 participants, including 12 AA patients, 12 TAR patients, and 12 controls were included. Gait assessment over 50 m distance was performed utilizing pressure insoles and 3D inertial sensors, following which an intraindividual comparison was performed. Most spatiotemporal and kinematic parameters in the TAR group were indicative of good gait symmetry, while the AA group presented significant differences. Plantar pressure symmetry among the AA group was also significantly distorted. Abnormality in biomechanical behavior of the AA unoperated, contralateral foot was observed. In summary, our results indicate an altered BGM in AA patients, whereas a relatively fully recovered BGM is observed in TAR patients, despite the quantitative differences in several parameters when compared to a healthy population. Our study supports a biomechanical assessment and rehabilitation of both operated and unoperated sides after major surgeries for ankle osteoarthrosis.
Resumo:
Barmumycin was isolated from an extract of the marine actinomycete Streptomyces sp. BOSC-022A and found to be cytotoxic against various human tumor cell lines. Based on preliminary one- and two-dimensional 1H- and 13C-NMR spectra, the natural compound was initially assigned the structure of macrolactone-type compound 1, which was later prepared by two different routes. However, major spectroscopic differences between isolated barmumycin and 1 led to revision of the proposed structure as E-16. Based on synthesis of this new compound, and subsequent spectroscopic comparison of it to an authentic sample of barmumycin, the structure of the natural compound was indeed confirmed as that of E-16.
Resumo:
Complications related to the neck-stem junction of modular stems used for total hip arthroplasty (THA) are generating increasing concern. A 74-year-old male had increasing pain and a cutaneous reaction around the scar 1 year after THA with a modular neck-stem. Imaging revealed osteolysis of the calcar and a pseudo-tumour adjacent to the neck-stem junction. Serum cobalt levels were elevated. Revision surgery to exchange the stem and liner and to resect the pseudo-tumour was performed. Analysis of the stem by scanning electron microscopy and by energy dispersive X-ray and white light interferometry showed fretting corrosion at the neck-stem junction contrasting with minimal changes at the head-neck junction. Thus, despite dry assembly of the neck and stem on the back table at primary THA, full neck-stem contact was not achieved, and the resulting micromotion at the interface led to fretting corrosion. This case highlights the mechanism of fretting corrosion at the neck-stem interface responsible for adverse local tissue reactions. Clinical and radiological follow-up is mandatory in patients with dual-modular stems.
Resumo:
Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
Resumo:
It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.
Resumo:
O objetivo deste trabalho foi desenvolver um modelo para estimar a área foliar total de bananeira, cultivar Prata-Anã, utilizando dimensões lineares da terceira folha, como o comprimento, a largura e o número total de folhas na emissão da inflorescência. As regressões lineares foram determinadas considerando-se a área foliar total de cada planta (AFT) como variável dependente e o comprimento (C) e a largura (L) da terceira folha, o produto de CxL, o número total de folhas por planta (N) e o produto de CxLxN como variáveis independentes. O modelo linear que melhor estimou a área foliar total (AFTe) da bananeira 'Prata-Anã', ao nível de 5% de significância com R² de 0,89, foi a equação AFTe = 0,5187(CxLxN) + 9603,5.
Resumo:
The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.
Resumo:
Pereskia aculeata Mill. (Ora-pro-nóbis) is a native cactaceae from tropical America, whose leaves have high protein content. In Brazil it is found in all territorial extension between the states of Bahia and Rio Grande do Sul. Most studies have focused on chemical characterization of the leaves of this specie. The objective was to assess the carotenoids profile and the total polyphenols present in the fruits of P. aculeate. Carotenoids were determined by HPLC-PAD (high performance liquid chromatography - photodiode array detector), total polyphenols were determined by Folin-Ciocalteu and vanillin methods. Trans-β-carotene was the main carotenoid, followed by α-carotene, lutein and other minor carotenoids. It was found 64.9 ± 1.1 mg.100g-1 of gallic acid equivalent, 14.8 ± 0.2 mg.100g-1 of catechin equivalent. Carotenoid identification of P. aculeate fruits are presented here by the first time and indicate that these fruits can be researched as source of bioactive substances, especially antioxidant and provitamin A carotenoids.
Resumo:
Työn tavoitteena oli kehittää nopeasti konvergoiva kuorielementti epälineaarisesti joustavien kappaleiden analysointiin. Kuorielementti perustuu absoluuttisten solmukoordinaattien menetelmään ja se hyödyntää kaarevuuden kuvausta elastisten voimien määrityksessä. Kehitettyä elementtiä verrattiin kontinuumimekaniikalla kehitettyyn kuorielementtiin ja kaupallisen elementtimenetelmän kuorielementtiin. Yksinkertaisimman kuormitustapauksen tuloksia verrattiin teknisen taivutusteorian mukaiseen analyyttiseen ratkaisuun. Staattisten testien tulokset tässä työssä kehitetyllä kuorielementillä vastasivat hyvin kaupallisella elementtimenetelmällä saatuja tuloksia. Deformaatioiden ollessa geometrisesti lineaarisella alueella, kehitetyllä kuorielementillä saadut tulokset vastasivat paremmin sekä analyyttistä ratkaisua että kaupallisella elementtimenetelmällä saatuja tuloksia kuin aiemman kontinuumimekaniikkaan perustuvan kuorielementin tulokset. Kehitetyn kuorielementin ongelmana verrattuna kontinuumimekaniikkaan perustuvaan elementtiin on monimutkaisempi kinematiikan kuvaus. Tästä on seurauksena laskenta-ajan huomattava kasvaminen. Jatkossa kannattaisi keskittyä numeeristen ratkaisumenetelmien kehittämiseen.
Resumo:
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.