Volcanoes of l-isogenies of elliptic curves over finite fields: the case l=3
Data(s) |
2007
|
---|---|
Resumo |
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided. |
Identificador | |
Idioma(s) |
eng |
Relação |
Reproducció del document publicat a http://dx.doi.org/10.5565/PUBLMAT_PJTN05_08 Reproducció del document publicat a http://ddd.uab.cat/record/52?ln=ca Publicacions matemàtiques, 2007, vol. Extra, p. 165-180 |
Direitos |
open access (c) Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007 |
Palavras-Chave | #Elliptic curves #Finite fields #Isogenies #Volcanoes #Corbes el·líptiques #Grups finits #Nombres, Teoria algebraica de |
Tipo |
article |