958 resultados para Extremal polynomial ultraspherical polynomials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Radius of Direct attraction of a discrete neural network is a measure of stability of the network. it is known that Hopfield networks designed using Hebb's Rule have a radius of direct attraction of Omega(n/p) where n is the size of the input patterns and p is the number of them. This lower bound is tight if p is no larger than 4. We construct a family of such networks with radius of direct attraction Omega(n/root plog p), for any p greater than or equal to 5. The techniques used to prove the result led us to the first polynomial-time algorithm for designing a neural network with maximum radius of direct attraction around arbitrary input patterns. The optimal synaptic matrix is computed using the ellipsoid method of linear programming in conjunction with an efficient separation oracle. Restrictions of symmetry and non-negative diagonal entries in the synaptic matrix can be accommodated within this scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a simple, undirected, finite graph with vertex set V (G) and edge set E(G). A k-dimensional box is a Cartesian product of closed intervals [a(1), b(1)] x [a(2), b(2)] x ... x [a(k), b(k)]. The boxicity of G, box(G), is the minimum integer k such that G can be represented as the intersection graph of k-dimensional boxes; i.e., each vertex is mapped to a k-dimensional box and two vertices are adjacent in G if and only if their corresponding boxes intersect. Let P = (S, P) be a poset, where S is the ground set and P is a reflexive, antisymmetric and transitive binary relation on S. The dimension of P, dim(P), is the minimum integer t such that P can be expressed as the intersection of t total orders. Let G(P) be the underlying comparability graph of P; i.e., S is the vertex set and two vertices are adjacent if and only if they are comparable in P. It is a well-known fact that posets with the same underlying comparability graph have the same dimension. The first result of this paper links the dimension of a poset to the boxicity of its underlying comparability graph. In particular, we show that for any poset P, box(G(P))/(chi(G(P)) - 1) <= dim(P) <= 2box(G(P)), where chi(G(P)) is the chromatic number of G(P) and chi(G(P)) not equal 1. It immediately follows that if P is a height-2 poset, then box(G(P)) <= dim(P) <= 2box(G(P)) since the underlying comparability graph of a height-2 poset is a bipartite graph. The second result of the paper relates the boxicity of a graph G with a natural partial order associated with the extended double cover of G, denoted as G(c): Note that G(c) is a bipartite graph with partite sets A and B which are copies of V (G) such that, corresponding to every u is an element of V (G), there are two vertices u(A) is an element of A and u(B) is an element of B and {u(A), v(B)} is an edge in G(c) if and only if either u = v or u is adjacent to v in G. Let P(c) be the natural height-2 poset associated with G(c) by making A the set of minimal elements and B the set of maximal elements. We show that box(G)/2 <= dim(P(c)) <= 2box(G) + 4. These results have some immediate and significant consequences. The upper bound dim(P) <= 2box(G(P)) allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) = 2 tree width (G(P)) + 4, since boxicity of any graph is known to be at most its tree width + 2. In the other direction, using the already known bounds for partial order dimension we get the following: (1) The boxicity of any graph with maximum degree Delta is O(Delta log(2) Delta), which is an improvement over the best-known upper bound of Delta(2) + 2. (2) There exist graphs with boxicity Omega(Delta log Delta). This disproves a conjecture that the boxicity of a graph is O(Delta). (3) There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices with a factor of O(n(0.5-is an element of)) for any is an element of > 0 unless NP = ZPP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical solution is presented to convert a given driving-point impedance function (in s-domain) into a physically realisable ladder network with inductive coupling between any two sections and losses considered. The number of sections in the ladder network can vary, but its topology is assumed fixed. A study of the coefficients of the numerator and denominator polynomials of the driving-point impedance function of the ladder network, for increasing number of sections, led to the identification of certain coefficients, which exhibit very special properties. Generalised expressions for these specific coefficients have also been derived. Exploiting their properties, it is demonstrated that the synthesis method essentially turns out to be an exercise of solving a set of linear, simultaneous, algebraic equations, whose solution directly yields the ladder network elements. The proposed solution is novel, simple and guarantees a unique network. Presently, the formulation can synthesise a unique ladder network up to six sections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an iterative algorithm to simulate the dynamics generated by any n-qubit Hamiltonian. The simulation entails decomposing the unitary time evolution operator U (unitary) into a product of different time-step unitaries. The algorithm product-decomposes U in a chosen operator basis by identifying a certain symmetry of U that is intimately related to the number of gates in the decomposition. We illustrate the algorithm by first obtaining a polynomial decomposition in the Pauli basis of the n-qubit quantum state transfer unitary by Di Franco et al. [Phys. Rev. Lett. 101, 230502 (2008)] that transports quantum information from one end of a spin chain to the other, and then implement it in nuclear magnetic resonance to demonstrate that the decomposition is experimentally viable. We further experimentally test the resilience of the state transfer to static errors in the coupling parameters of the simulated Hamiltonian. This is done by decomposing and simulating the corresponding imperfect unitaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Linear phase(LP) Finite Impulse Response(FIR) filters are widely used in many signal processing systems which are sensitive to phase distortion. In this article, we obtain a canonic lattice structure of an LP-FIR filter with a complex impulse response. This lattice structure is based on some novel lattice stages obtained from some properties of symmetric polynomials.This canonic lattice structure exploits the redundancy in the zeros of an LP-FIR filter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present two online algorithms for maintaining a topological order of a directed n-vertex acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm handles m arc additions in O(m(3/2)) time. For sparse graphs (m/n = O(1)), this bound improves the best previous bound by a logarithmic factor, and is tight to within a constant factor among algorithms satisfying a natural locality property. Our second algorithm handles an arbitrary sequence of arc additions in O(n(5/2)) time. For sufficiently dense graphs, this bound improves the best previous bound by a polynomial factor. Our bound may be far from tight: we show that the algorithm can take Omega(n(2)2 root(2lgn)) time by relating its performance to a generalization of the k-levels problem of combinatorial geometry. A completely different algorithm running in Theta (n(2) log n) time was given recently by Bender, Fineman, and Gilbert. We extend both of our algorithms to the maintenance of strong components, without affecting the asymptotic time bounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The orientational relaxation dynamics of water confined between mica surfaces is investigated using molecular dynamics simulations. The study illustrates the wide heterogeneity that exists in the dynamics of water adjacent to a strongly hydrophilic surface such as mica. Analysis of the survival probabilities in different layers is carried out by normalizing the corresponding relaxation times with bulk water layers of similar thickness. A 10-fold increase in the survival times is observed for water directly in contact with the mica surface and a non-monotonic variation in the survival times is observed moving away from the mica surface to the bulk-like interior. The orientational relaxation time is highest for water in the contact layer, decreasing monotonically away from the surface. In all cases the ratio of the relaxation times of the 1st and 2nd rank Legendre polynomials of the HH bond vector is found to lie between 1.5 and 1.9 indicating that the reorientational relaxation in the different water layers is governed by jump dynamics. The orientational dynamics of water in the contact layer is particularly novel and is found to undergo distinct two-dimensional hydrogen bond jump reorientational dynamics with an average waiting time of 4.97 ps. The waiting time distribution is found to possess a long tail extending beyond 15 ps. Unlike previously observed jump dynamics in bulk water and other surfaces, jump events in the mica contact layer occur between hydrogen bonds formed by the water molecule and acceptor oxygens on the mica surface. Despite slowing down of the water orientational relaxation near the surface, life-times of water in the hydration shell of the K ion are comparable to that observed in bulk salt solutions. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4717710]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a set of points P ⊆ R2, a conflict-free coloring of P w.r.t. rectangle ranges is an assignment of colors to points of P, such that each nonempty axisparallel rectangle T in the plane contains a point whose color is distinct from all other points in P ∩ T . This notion has been the subject of recent interest and is motivated by frequency assignment in wireless cellular networks: one naturally would like to minimize the number of frequencies (colors) assigned to base stations (points) such that within any range (for instance, rectangle), there is no interference. We show that any set of n points in R2 can be conflict-free colored with O(nβ∗+o(1)) colors in expected polynomial time, where β∗ = 3−√5 2 < 0.382.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study constrained maximum entropy and minimum divergence optimization problems, in the cases where integer valued sufficient statistics exists, using tools from computational commutative algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. We give an implicit description of maximum entropy models by embedding them in algebraic varieties for which we give a Grobner basis method to compute it. In the cases of minimum KL-divergence models we show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner basis method to embed minimum KL-divergence models in algebraic varieties. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design optimisation of a helicopter rotor blade is performed. The objective is to reduce helicopter vibration and constraints are put on frequencies and aeroelastic stability. The ply angles of the D-spar and skin of the composite rotor blade with NACA 0015 aerofoil section are considered as design variables. Polynomial response surfaces and space filling experimental designs are used to generate surrogate models of the objective function with respect to cross-section properties. The stacking sequence corresponding to the optimal cross-section is found using a real-coded genetic algorithm. Ply angle discretisation of 1 degrees, 15 degrees, 30 degrees and 45 degrees are used. The mean value of the objective function is used to find the optimal blade designs and the resulting designs are tested for variance. The optimal designs show a vibration reduction of 26% to 33% from the baseline design. A substantial reduction in vibration and an aeroelastically stable blade is obtained even after accounting for composite material uncertainty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a fixed positive integer k, a k-tuple total dominating set of a graph G = (V. E) is a subset T D-k of V such that every vertex in V is adjacent to at least k vertices of T Dk. In minimum k-tuple total dominating set problem (MIN k-TUPLE TOTAL DOM SET), it is required to find a k-tuple total dominating set of minimum cardinality and DECIDE MIN k-TUPLE TOTAL DOM SET is the decision version of MIN k-TUPLE TOTAL DOM SET problem. In this paper, we show that DECIDE MIN k-TUPLE TOTAL DOM SET is NP-complete for split graphs, doubly chordal graphs and bipartite graphs. For chordal bipartite graphs, we show that MIN k-TUPLE TOTAL DOM SET can be solved in polynomial time. We also propose some hardness results and approximation algorithms for MIN k-TUPLE TOTAL DOM SET problem. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function n f(center dot), where n is an element of N, and f is a probability density function on R-d. A vertex located at x connects via directed edges to other vertices that are within a cut-off distance r(n)(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large n and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N = 2 supersymmetric model (with one chiral field) for all values of the `t Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.