866 resultados para Electrochemical impedance spectroscopy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical redox processes of two high nuclearity osmium carbonyl clusters [(PhP)N[OsC(CO) ]·PPN (1) and Os(CO) (6) have been studied by electrochemical in situ FTIR. The five oxidation states of 1, i.e., [OsC(CO)], have been characterized. There are no significant structural changes for these species. Hence, the ability of this decanuclear cluster to act as an electron reservoir has been demonstrated. The structural rearrangement associated with the two-electron reduction of bicapped tetrahedral 6 to octahedral dianion [Os(CO)] and [Os(CO)] tetraanion has also been investigated. © 1996 American Chemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach is developed for probing the thermodynamics and kinetics of irreversible electrochemical reactions on solid surfaces based on local frequency-voltage spectroscopy. For a model Li-ion conductor surface, two regimes for bias-controlled behavior are demonstrated and ascribed to the difference in the critical nucleus size. The electrostatic and electrochemical phenomena at the tip-surface junction are analyzed. These studies suggest an experimental pathway for exploring local electrochemical activity in solids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Frequency-dependent electroluminescence and electric current response spectroscopy were applied to polymeric light-emitting electrochemical cells in order to obtain information about the operation mechanism regimes of such devices. Three clearly distinct frequency regimes could be identified: a dielectric regime at high frequencies; an ionic transport regime, characterized by ionic drift and electronic diffusion; and an electrolytic regime, characterized by electronic injection from the electrodes and electrochemical doping of the conjugated polymer. From the analysis of the results, it was possible to evaluate parameters like the diffusion speed of electronic charge carriers in the active layer and the voltage drop necessary for operation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752438]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As revealed for the first time by in situ scanning tunnelling spectroscopy (STS), ferrocene-modified Si(111) substrates show ambipolar field effect transistor (FET) behaviour upon electrolyte gating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of anions on the redox behavior and structure of 11-ferrocenyl-1-undecanethiol (FcC11) monolayers (SAM) on Au(1 1 1) single crystal and Au(1 1 1-25 nm) thin film electrodes was investigated in 0.1 M solutions of HPF6, HClO4, HBF4, HNO3, and H2SO4 by cyclic voltammetry (CV) and in situ surface-enhanced infrared reflection-absorption spectroscopy (SEIRAS). We demonstrate that the FcC11 redox peaks shift toward positive potentials and broaden with increasing hydrophilicity of the anions. In situ surface-enhanced IR-spectroscopy (SEIRAS) provided direct access for the incorporation of anions into the oxidized adlayer. The coadsorption of anions is accompanied by the penetration of water molecules. The latter effect is particularly pronounced in aqueous HNO3 and H2SO4 electrolytes. The adlayer permeability increases with increasing hydrophilicity of the anions. We also found that even the neutral (reduced) FcC11 SAM is permeable for water molecules. Based on the property of interfacial water to reorient upon charge inversion, we propose a spectroscopic approach for estimating the potential of zero total charge of the FcC11-modified Au(1 1 1) electrodes in aqueous electrolytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cathodic conditions, and then they disappear when the potential increases to more positive values. This indicates that carbon–hydrogen bonds are formed reversibly in both electrolytes during cathodic conditions. Comparing the two activated carbons, it was confirmed that, in both electrolytes, the hydrogenation of carbon atoms is produced more easily for the sample with lower amount of surface oxygen groups. In KOH medium, for the two samples, the formation of carbon–hydrogen bonds proceeds at more positive potential with respect to the thermodynamic potential value for hydrogen evolution. Furthermore, changes in the shape of the D band (due to an intensity increase of the D1 band) during the formation of carbon–hydrogen bonds suggest that hydrogenation of the carbon atoms increases the number of edge planes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrochemical quartz crystal microbalance was used to monitor the mass changes during the electrochemical characterization of a zeolite-templated carbon (ZTC) in 1 M H2SO4 medium. Under electrochemical oxidation conditions, a high anodic current and a net mass increase were recorded, resulting in the increase of the specific capacitance owing to the contribution of the pseudocapacitance, mainly derived from the hydroquinone–quinone redox couple. Under more severe electrochemical conditions, a net mass loss was observed, revealing that electrochemical gasification took place. Surface chemistry, before and after the electrochemical treatments, was analyzed through temperature programmed desorption experiments. Furthermore, in situ Raman spectroscopy was used to further characterize the structural changes produced in ZTC under the electrochemical conditions applied, supporting that high potential values produce the electrochemical oxidation and degradation of the carbon material.