New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy


Autoria(s): Leyva García, Sarai; Morallon, Emilia; Cazorla-Amorós, Diego; Béguin, François; Lozano Castelló, Dolores
Contribuinte(s)

Universidad de Alicante. Departamento de Química Inorgánica

Universidad de Alicante. Departamento de Química Física

Universidad de Alicante. Instituto Universitario de Materiales

Materiales Carbonosos y Medio Ambiente

Electrocatálisis y Electroquímica de Polímeros

Data(s)

12/02/2015

12/02/2015

01/04/2014

Resumo

In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cathodic conditions, and then they disappear when the potential increases to more positive values. This indicates that carbon–hydrogen bonds are formed reversibly in both electrolytes during cathodic conditions. Comparing the two activated carbons, it was confirmed that, in both electrolytes, the hydrogenation of carbon atoms is produced more easily for the sample with lower amount of surface oxygen groups. In KOH medium, for the two samples, the formation of carbon–hydrogen bonds proceeds at more positive potential with respect to the thermodynamic potential value for hydrogen evolution. Furthermore, changes in the shape of the D band (due to an intensity increase of the D1 band) during the formation of carbon–hydrogen bonds suggest that hydrogenation of the carbon atoms increases the number of edge planes.

The authors would like to thank the Spanish Ministerio de Economía y Competitividad and FEDER funds (Projects CTQ2012-31762 and MAT2010-15273) and Generalitat Valenciana and FEDER (PROMETEO/2009/047) for financial support. SLG thanks: Vicerrectorado de Investigación, Desarrollo e Innovación of the University of Alicante for a Fellowship for research initiation and Generalitat Valenciana and FEDER for a fellowships for training of researchers. F.B. acknowledges the support of the Foundation for Polish Science within the WELCOME program (ECOLCAP project).

Identificador

Carbon. 2014, 69: 401-408. doi:10.1016/j.carbon.2013.12.042

0008-6223 (Print)

1873-3891 (Online)

http://hdl.handle.net/10045/44750

10.1016/j.carbon.2013.12.042

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.carbon.2013.12.042

Direitos

© 2013 Elsevier Ltd.

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #In situ Raman spectroscopy #Electrochemical hydrogen storage #Nanoporous carbons #Química Inorgánica #Química Física
Tipo

info:eu-repo/semantics/article