848 resultados para Distributed artificial intelligence
Resumo:
Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.
Resumo:
The advantages offered by the electronic component LED (Light Emitting Diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through comparative analysis of neuro-fuzzy architectures, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data.
Resumo:
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.
Resumo:
A novel approach for solving robust parameter estimation problems is presented for processes with unknown-but-bounded errors and uncertainties. An artificial neural network is developed to calculate a membership set for model parameters. Techniques of fuzzy logic control lead the network to its equilibrium points. Simulated examples are presented as an illustration of the proposed technique. The result represent a significant improvement over previously proposed methods. (C) 1999 IMACS/Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them
Resumo:
The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles
Resumo:
There is a need for multi-agent system designers in determining the quality of systems in the earliest phases of the development process. The architectures of the agents are also part of the design of these systems, and therefore also need to have their quality evaluated. Motivated by the important role that emotions play in our daily lives, embodied agents researchers have aimed to create agents capable of producing affective and natural interaction with users that produces a beneficial or desirable result. For this, several studies proposing architectures of agents with emotions arose without the accompaniment of appropriate methods for the assessment of these architectures. The objective of this study is to propose a methodology for evaluating architectures emotional agents, which evaluates the quality attributes of the design of architectures, in addition to evaluation of human-computer interaction, the effects on the subjective experience of users of applications that implement it. The methodology is based on a model of well-defined metrics. In assessing the quality of architectural design, the attributes assessed are: extensibility, modularity and complexity. In assessing the effects on users' subjective experience, which involves the implementation of the architecture in an application and we suggest to be the domain of computer games, the metrics are: enjoyment, felt support, warm, caring, trust, cooperation, intelligence, interestingness, naturalness of emotional reactions, believabiliy, reducing of frustration and likeability, and the average time and average attempts. We experimented with this approach and evaluate five architectures emotional agents: BDIE, DETT, Camurra-Coglio, EBDI, Emotional-BDI. Two of the architectures, BDIE and EBDI, were implemented in a version of the game Minesweeper and evaluated for human-computer interaction. In the results, DETT stood out with the best architectural design. Users who have played the version of the game with emotional agents performed better than those who played without agents. In assessing the subjective experience of users, the differences between the architectures were insignificant
Resumo:
We consider the management branch model where the random resources of the subsystem are given by the exponential distributions. The determinate equivalent is a block structure problem of quadratic programming. It is solved effectively by means of the decomposition method, which is based on iterative aggregation. The aggregation problem of the upper level is resolved analytically. This overcomes all difficulties concerning the large dimension of the main problem.
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an application of an ontology based system for automated text analysis using a sample of a drilling report to demonstrate how the methodology works. The methodology used here consists basically of organizing the knowledge related to the drilling process by elaborating the ontology of some typical problems. The whole process was carried out with the assistance of a drilling expert, and by also using software to collect the knowledge from the texts. Finally, a sample of drilling reports was used to test the system, evaluating its performance on automated text classification.
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.