Implementation of two-stage Hopfield model and its application in nonlinear systems


Autoria(s): da Silva, I. N.; Ulson, Jose Alfredo Covolan; de Souza, A. N.; Rutkowski, L.; Siekmann, J.; Tadeusiewicz, R.; Zadeh, L. A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2004

Resumo

This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.

Formato

954-959

Identificador

http://dx.doi.org/10.1007/978-3-540-24844-6_148

Artificial Intelligence and Soft Computing - Icaisc 2004. Berlin: Springer-verlag Berlin, v. 3070, p. 954-959, 2004.

0302-9743

http://hdl.handle.net/11449/8907

10.1007/978-3-540-24844-6_148

WOS:000222325200148

Idioma(s)

eng

Publicador

Springer

Relação

Artificial Intelligence and Soft Computing - Icaisc 2004

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article