A novel approach to robust parameter estimation using neurofuzzy systems


Autoria(s): da Silva, I. N.; de Arruda, LVR; do Amaral, W. C.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/02/1999

Resumo

A novel approach for solving robust parameter estimation problems is presented for processes with unknown-but-bounded errors and uncertainties. An artificial neural network is developed to calculate a membership set for model parameters. Techniques of fuzzy logic control lead the network to its equilibrium points. Simulated examples are presented as an illustration of the proposed technique. The result represent a significant improvement over previously proposed methods. (C) 1999 IMACS/Elsevier B.V. B.V. All rights reserved.

Formato

251-268

Identificador

http://dx.doi.org/10.1016/S0378-4754(98)00161-X

Mathematics and Computers In Simulation. Amsterdam: Elsevier B.V., v. 48, n. 3, p. 251-268, 1999.

0378-4754

http://hdl.handle.net/11449/8911

10.1016/S0378-4754(98)00161-X

WOS:000079961200001

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Mathematics and Computers In Simulation

Direitos

closedAccess

Palavras-Chave #robust parameter estimation #neurofuzzy system #artificial intelligence #neural networks
Tipo

info:eu-repo/semantics/article