888 resultados para Continuity principle
Resumo:
Over the last three years, in our Early Algebra Thinking Project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of models and representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus, 1991, and Duval, 1999). The results have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This chapter uses the results to explore the interrelation between generalisation and verbal and visual comprehension of context. The studies evidence the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations. Finally the chapter explores the implications of the studies for a theory that describes a growth in integration of models and representations that leads to generalisation.
Resumo:
In this paper we consider the implementation of time and energy efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected to the results of the application of the maximum principle to the controlled mechanical system. We use a numerical algorithm to compute efficient trajectories designed using geometric control theory to optimize a given cost function. Experimental results are shown for the time minimization problem.
Resumo:
From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.
Resumo:
Airports are typical examples of large and complex infrastructure systems. They serve a purpose of not only transporting people around the globe but are central to trade and commerce and, in a nation as large as Australia, an important means to connect people and regions. Reducing uncertainty and managing risk in such systems are not only critical tasks integral to effective management practice but equally important for border protection and national security outcomes. This latter issue has been emphasised on a national level in Australia with a number of recent enquiries taking place, most notably the Wheeler Review1 into aviation security in 2005 and the 2009 National Aviation Policy White Paper2 on the future of aviation in Australia.
Resumo:
As the world’s rural populations continue to migrate from farmland to sprawling cities, transport networks form an impenetrable maze within which monocultures of urban form erupt from the spaces in‐between. These urban monocultures are as problematic to human activity in cities as cropping monocultures are to ecosystems in regional landscapes. In China, the speed of urbanisation is exacerbating the production of mono‐functional private and public spaces. Edges are tightly controlled. Barriers and management practices at these boundaries are discouraging the formation of new synergistic relationships, critical in the long‐term stability of ecosystems that host urban habitats. Some urban planners, engineers, urban designers, architects and landscape architects have recognised these shortcomings in contemporary Chinese cities. The ideology of sustainability, while critically debated, is bringing together thinking people in these and other professions under the umbrella of an ecological ethic. This essay aims to apply landscape ecology theory, a conceptual framework used by many professionals involved in land development processes, to a concept being developed by BAU International called Networks Cities: a city with its various land uses arranged in nets of continuity, adjacency, and superposition. It will consider six lesser‐known concepts in relation to creating enhanced human activity along (un)structured edges between proposed nets and suggest new frontiers that might be challenged in an eco‐city. Ecological theory suggests that sustaining biodiversity in regions and landscapes depends on habitat distribution patterns. Flora and fauna biologists have long studied edge habitats and have been confounded by the paradox that maximising the breadth of edges is detrimental to specialist species but favourable to generalist species. Generalist species of plants and animals tolerate frequent change in the landscape, frequenting two or more habitats for their survival. Specialist species are less tolerant of change, having specific habitat requirements during their life cycle. Protecting species richness then may be at odds with increasing mixed habitats or mixed‐use zones that are dynamic places where diverse activities occur. Forman (1995) in his book Land Mosaics however argues that these two objectives of land use management are entirely compatible. He postulates that an edge may be comprised of many small patches, corridors or convoluting boundaries of large patches. Many ecocentrists now consider humans to be just another species inhabiting the ecological environments of our cities. Hence habitat distribution theory may be useful in planning and designing better human habitats in a rapidly urbanising context like China. In less‐constructed environments, boundaries and edges provide important opportunities for the movement of multi‐habitat species into, along and from adjacent land use areas. For instance, invasive plants may escape into a national park from domestic gardens while wildlife may forage on garden plants in adjoining residential areas. It is at these interfaces that human interactions too flow backward and forward between land types. Spray applications of substances by farmers on cropland may disturb neighbouring homeowners while suburban residents may help themselves to farm produce on neighbouring orchards. Edge environments are some of the most dynamic and contested spaces in the landscape. Since most of us require access to at least two or three habitats diurnally, weekly, monthly or seasonally, their proximity to each other becomes critical in our attempts to improve the sustainability of our cities.
Resumo:
Generative systems are now being proposed for addressing major ecological problems. The Complex Urban Systems Project (CUSP) founded in 2008 at the Queensland University of Technology, emphasises the ecological significance of the generative global networking of urban environments. It argues that the natural planetary systems for balancing global ecology are no longer able to respond sufficiently rapidly to the ecological damage caused by humankind and by dense urban conurbations in particular as evidenced by impacts such as climate change. The proposal of this research project is to provide a high speed generative nervous system for the planet by connecting major cities globally to interact directly with natural ecosystems to engender rapid ecological response. This would be achieved by active interactions of the global urban network with the natural ecosystem in the ecological principle of entropy. The key goal is to achieve ecologically positive cities by activating self-organising cities capable of full integration into natural eco-systems and to netowork the cities globally to provide the planet with a nervous system.
Resumo:
Dr. Richard Shapcott is the senior lecturer in International Relations at the University of Queensland. His areas of interest in research concern international ethics, cosmopolitan political theory and cultural diversity. He is the author of the recently published book titled International Ethics: A Critical Introduction; and several other pieces, such as, “Anti-Cosmopolitanism, the Cosmopolitan Harm Principle and Global Dialogue,” in Michalis’ and Petito’s book, Civilizational Dialogue and World Order. He’s also the author of “Dialogue and International Ethics: Religion, Cultural Diversity and Universalism, in Patrick Hayden’s, The Ashgate Research Companion to Ethics and International Relations.
Resumo:
Assessment Principle -- -- The capstone experience should include assessment that: 1: Enables students to apply their knowledge skills and capabilities in an authentic context ; 2: Tests whether or not students are able to apply knowledge skills and capabilities in unfamiliar contexts ; 3: Incorporates feedback from a multitude of sources including peers and self‐reflection to enable students to become self‐reliant and to exercise their own professional judgment ; 4: Recognises the culminating nature of the capstone experience.
Resumo:
The Centre for Subtropical Design has prepared this submission to assist the Gold Coast City Council to finalise a plan and detailed design guidelines for the Urban Plaza Zone of Surfers Paradise Foreshore Redevelopment Masterplan which will create a public open space ‘alive’ with the quality appropriate to a place which is both a local centre and an international destination. This review has been informed by the two over-arching values identified as characteristics of a subtropical place and people’s connection to it: A sense of openness and permeability, and Engagement with the natural environment. The existing qualities of the foreshore area proposed as the Urban Plaza Zone, reflect these subtropical place values, and are integral to the Surfers Paradise identity: Seamless visual and spatial access to the beach and sea, Permeable interface between beach and built zones provided by beach planting and shade to sand by Pandanus, A shade zone mediating beach and linear promenade, road and commercial zones, enabling a variety of social and visual experiences, on soft and hard finishes, and A lively, constantly moving shared road and pedestrian way catering for events and day to day activities with visual access to beach and shaded areas. The Centre for Subtropical Design commends the Gold Coast City Council on preparing a plan for a public open space that is a contemporary departure from the adhoc basis of development that has occurred, in that it will make this area more accessible. However, the proposed plan seems to be working too hard in terms of ‘program’. While providing an identifiable interruption in the linear extent of the Foreshore, the lack of continuity of design in terms of both hardscaping (such as perpendicular paving elements) and softscaping (such as tree selections) may contribute to a lack of definition for the entire Foreshore as a place that mediates, along its length, between sea and land. Providing a hard edge to a beach character of soft and planted transitional elements needs to balance the proposed visual and physical barrier with the need for perceived and actual easy access. The Surfers Paradise identity needs strengthening through attention to planting for shade, materials, particularly selection of paving colours, and stronger delineation of the linear nature of the Foreshore. The Urban Plaza zone is an appropriate interruption to the continuous planting, however the link from the commercial zone overtakes the public and beach zone. A more seamless transition from shop to sea, better integration of the roadway and pedestrian zone and improved physical transition from concrete to sand is recommended. Built form solutions must be robust and designed with the subtropical design principles and the Surfers Paradise identity as underpinning parameters for a lasting and memorable public open space.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
In Cook v Cook the Australian High Court held that the standard of reasonable care owed by a learner driver to an instructor, conscious of the driver’s lack of experience, was lower than that owed to other passengers and road users. Recently, in Imbree v McNeilly, the High Court declined to follow this principle, concluding that the driver’s status or relationship with the claimant should no longer influence or alter the standard of care owed. The decision therefore provides an opportunity to re-examine the rationale and policy behind current jurisprudence governing the standard of care owed by learner drivers. In doing so, this article considers the principles relevant to determining the standard and Imbree’s implications for other areas of tort law and claimant v defendant relationships. It argues that Imbree was influenced by changing judicial perceptions concerning the vulnerability of driving instructors and the relevance of insurance to tortious liability.
Resumo:
Planning on utilization of train-set is one of the key tasks of transport organization for passenger dedicated railway in China. It also has strong relationships with timetable scheduling and operation plans at a station. To execute such a task in a railway hub pooling multiple railway lines, the characteristics of multiple routing for train-set is discussed in term of semicircle of train-sets' turnover. In programming the described problem, the minimum dwell time is selected as the objectives with special derive constraints of the train-set's dispatch, the connecting conditions, the principle of uniqueness for train-sets, and the first plus for connection in the same direction based on time tolerance σ. A compact connection algorithm based on time tolerance is then designed. The feasibility of the model and the algorithm is proved by the case study. The result indicates that the circulation model and algorithm about multiple routing can deal with the connections between the train-sets of multiple directions, and reduce the train's pulling in or leaving impact on the station's throat.
Resumo:
Introduction: Emergency prehospital medical care providers are frontline health workers during emergencies. However, little is known about their attitudes, perceptions, and likely behaviors during emergency conditions. Understanding these attitudes and behaviors is crucial to mitigating the psychological and operational effects of biohazard events such as pandemic influenza, and will support the business continuity of essential prehospital services. ----- ----- Problem: This study was designed to investigate the association between knowledge and attitudes regarding avian influenza on likely behavioral responses of Australian emergency prehospital medical care providers in pandemic conditions. ----- ----- Methods: Using a reply-paid postal questionnaire, the knowledge and attitudes of a national, stratified, random sample of the Australian emergency prehospital medical care workforce in relation to pandemic influenza were investigated. In addition to knowledge and attitudes, there were five measures of anticipated behavior during pandemic conditions: (1) preparedness to wear personal protective equipment (PPE); (2) preparedness to change role; (3) willingness to work; and likely refusal to work with colleagues who were exposed to (4) known and (5) suspected influenza. Multiple logistic regression models were constructed to determine the independent predictors of each of the anticipated behaviors, while controlling for other relevant variables. ----- ----- Results: Almost half (43%) of the 725 emergency prehospital medical care personnel who responded to the survey indicated that they would be unwilling to work during pandemic conditions; one-quarter indicated that they would not be prepared to work in PPE; and one-third would refuse to work with a colleague exposed to a known case of pandemic human influenza. Willingness to work during a pandemic (OR = 1.41; 95% CI = 1.0–1.9), and willingness to change roles (OR = 1.44; 95% CI = 1.04–2.0) significantly increased with adequate knowledge about infectious agents generally. Generally, refusal to work with exposed (OR = 0.48; 95% CI = 0.3–0.7) or potentially exposed (OR = 0.43; 95% CI = 0.3–0.6) colleagues significantly decreased with adequate knowledge about infectious agents. Confidence in the employer’s capacity to respond appropriately to a pandemic significantly increased employee willingness to work (OR = 2.83; 95% CI = 1.9–4.1); willingness to change roles during a pandemic (OR = 1.52; 95% CI = 1.1–2.1); preparedness to wear PPE (OR = 1.68; 95% CI = 1.1–2.5); and significantly decreased the likelihood of refusing to work with colleagues exposed to (suspected) influenza (OR = 0.59; 95% CI = 0.4–0.9). ----- ----- Conclusions:These findings indicate that education and training alone will not adequately prepare the emergency prehospital medical workforce for a pandemic. It is crucial to address the concerns of ambulance personnel and the perceived concerns of their relationship with partners in order to maintain an effective prehospital emergency medical care service during pandemic conditions.
Resumo:
Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.
Resumo:
Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.