916 resultados para Context-Aware and Adaptable Architectures
Resumo:
The thesis can be divided in four parts and summarized as follows:(i) The investigation and development of a continuous flow synthesis procedure affording end-functional polymers by anionic polymerization and subsequent termination in one reaction step and on a multigram scale was carried out. Furthermore, the implementation of not only a single hydroxyl but multiple orthogonal functionalities at the chain terminus was achieved by utilizing individually designed, functional epoxide-based end-capping reagents.(ii) In an additional step, the respective polymers were used as macroinitiators to prepare in-chain functionalized block copolymers and star polymers bearing intriguing novel structural and material properties. Thus, the second part of this thesis presents the utilization of end-functional polymers as precursors for the synthesis of amphiphilic complex and in some cases unprecedented macromolecular architectures, such as miktoarm star polymers based on poly(vinyl pyridine), poly(vinyl ferrocene) and PEO.(iii) Based on these structures, the third part of this thesis represents a detailed investigation of the preparation of stimuli-responsive ultrathin polymer films, using amphiphilic junction point-reactive block copolymers. The single functionality at the block interface can be employed as anchor group for the covalent attachment on surfaces. Furthermore, the change of surface properties was studied by applying different external stimuli.(iv) An additional topic related to the oxyanionic polymerizations carried out in the context of this thesis was the investigation of viscoelastic properties of different hyperbranched polyethers, inspired by the recent and intense research activities in the field of biomedical applications of multi-functional hyperbranched materials.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
Requirements are sensitive to the context in which the system-to-be must operate. Where such context is well-understood and is static or evolves slowly, existing RE techniques can be made to work well. Increasingly, however, development projects are being challenged to build systems to operate in contexts that are volatile over short periods in ways that are imperfectly understood. Such systems need to be able to adapt to new environmental contexts dynamically, but the contextual uncertainty that demands this self-adaptive ability makes it hard to formulate, validate and manage their requirements. Different contexts may demand different requirements trade-offs. Unanticipated contexts may even lead to entirely new requirements. To help counter this uncertainty, we argue that requirements for self-adaptive systems should be run-time entities that can be reasoned over in order to understand the extent to which they are being satisfied and to support adaptation decisions that can take advantage of the systems' self-adaptive machinery. We take our inspiration from the fact that explicit, abstract representations of software architectures used to be considered design-time-only entities but computational reflection showed that architectural concerns could be represented at run-time too, helping systems to dynamically reconfigure themselves according to changing context. We propose to use analogous mechanisms to achieve requirements reflection. In this paper we discuss the ideas that support requirements reflection as a means to articulate some of the outstanding research challenges.
Resumo:
In the area of Software Engineering, traceability is defined as the capability to track requirements, their evolution and transformation in different components related to engineering process, as well as the management of the relationships between those components. However the current state of the art in traceability does not keep in mind many of the elements that compose a product, specially those created before requirements arise, nor the appropriated use of traceability to manage the knowledge underlying in order to be handled by other organizational or engineering processes. In this work we describe the architecture of a reference model that establishes a set of definitions, processes and models which allow a proper management of traceability and further uses of it, in a wider context than the one related to software development.
Resumo:
The number of connected devices collecting and distributing real-world information through various systems, is expected to soar in the coming years. As the number of such connected devices grows, it becomes increasingly difficult to store and share all these new sources of information. Several context representation schemes try to standardize this information, but none of them have been widely adopted. In previous work we addressed this challenge, however our solution had some drawbacks: poor semantic extraction and scalability. In this paper we discuss ways to efficiently deal with representation schemes' diversity and propose a novel d-dimension organization model. Our evaluation shows that d-dimension model improves scalability and semantic extraction.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.
Resumo:
Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.
Resumo:
Analog In-memory Computing (AIMC) has been proposed in the context of Beyond Von Neumann architectures as a valid strategy to reduce internal data transfers energy consumption and latency, and to improve compute efficiency. The aim of AIMC is to perform computations within the memory unit, typically leveraging the physical features of memory devices. Among resistive Non-volatile Memories (NVMs), Phase-change Memory (PCM) has become a promising technology due to its intrinsic capability to store multilevel data. Hence, PCM technology is currently investigated to enhance the possibilities and the applications of AIMC. This thesis aims at exploring the potential of new PCM-based architectures as in-memory computational accelerators. In a first step, a preliminar experimental characterization of PCM devices has been carried out in an AIMC perspective. PCM cells non-idealities, such as time-drift, noise, and non-linearity have been studied to develop a dedicated multilevel programming algorithm. Measurement-based simulations have been then employed to evaluate the feasibility of PCM-based operations in the fields of Deep Neural Networks (DNNs) and Structural Health Monitoring (SHM). Moreover, a first testchip has been designed and tested to evaluate the hardware implementation of Multiply-and-Accumulate (MAC) operations employing PCM cells. This prototype experimentally demonstrates the possibility to reach a 95% MAC accuracy with a circuit-level compensation of cells time drift and non-linearity. Finally, empirical circuit behavior models have been included in simulations to assess the use of this technology in specific DNN applications, and to enhance the potentiality of this innovative computation approach.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.
Resumo:
Mother and infant mortality has been the scope of analysis throughout the history of public health in Brazil and various strategies to tackle the issue have been proposed to date. The Ministry of Health has been working on this and the Rede Cegonha strategy is the most recent policy in this context. Given the principle of comprehensive health care and the structure of the Unified Health System in care networks, it is necessary to ensure the integration of health care practices, among which are the sanitary surveillance actions (SSA). Considering that the integration of health care practices and SSA can contribute to reduce mother and infant mortality rates, this article is a result of qualitative research that analyzed the integration of these actions in four cities in the State of São Paulo/Brazil: Campinas, Indaiatuba, Jaguariúna and Santa Bárbara D'Oeste. The research was conducted through interviews with SSA and maternal health managers, and the data were evaluated using thematic analysis. The results converge with other studies, identifying the isolation of health care practices and SSA. The insertion of SSA in collectively-managed areas appears to be a potential strategy for health planning and implementation of actions in the context under scrutiny.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.