2 resultados para Context-Aware and Adaptable Architectures

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent developments in micro- and nanoscale 3D fabrication techniques have enabled the creation of materials with a controllable nanoarchitecture that can have structural features spanning 5 orders of magnitude from tens of nanometers to millimeters. These fabrication methods in conjunction with nanomaterial processing techniques permit a nearly unbounded design space through which new combinations of nanomaterials and architecture can be realized. In the course of this work, we designed, fabricated, and mechanically analyzed a wide range of nanoarchitected materials in the form of nanolattices made from polymer, composite, and hollow ceramic beams. Using a combination of two-photon lithography and atomic layer deposition, we fabricated samples with periodic and hierarchical architectures spanning densities over 4 orders of magnitude from ρ=0.3-300kg/m3 and with features as small as 5nm. Uniaxial compression and cyclic loading tests performed on different nanolattice topologies revealed a range of novel mechanical properties: the constituent nanoceramics used here have size-enhanced strengths that approach the theoretical limit of materials strength; hollow aluminum oxide (Al2O3) nanolattices exhibited ductile-like deformation and recovered nearly completely after compression to 50% strain when their wall thicknesses were reduced below 20nm due to the activation of shell buckling; hierarchical nanolattices exhibited enhanced recoverability and a near linear scaling of strength and stiffness with relative density, with E∝ρ1.04 and σy∝ρ1.17 for hollow Al2O3 samples; periodic rigid and non-rigid nanolattice topologies were tested and showed a nearly uniform scaling of strength and stiffness with relative density, marking a significant deviation from traditional theories on “bending” and “stretching” dominated cellular solids; and the mechanical behavior across all topologies was highly tunable and was observed to strongly correlate with the slenderness λ and the wall thickness-to-radius ratio t/a of the beams. These results demonstrate the potential of nanoarchitected materials to create new highly tunable mechanical metamaterials with previously unattainable properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive intermediates play an important the within the realm of chemical synthesis. Their high energy and transient nature make them difficult to observe and characterize, but it is these same properties that empower them to form bonds traditionally seen as difficult to prepare and unusual architectures quickly and efficiently. Herein, two reactive intermediates, arynes and transitient (2azaaryl)-cuprates, are exploited for their abilities to prepare important chemical motifs. Both serve as an avenue into the functionalization of arenes to provide products which hold value in a variety of fields including natural product total syntethis, pharmaseuticals and ligand design.