1000 resultados para Clarke matrix
Resumo:
Matrix algorithms are important in many types of applications including image and signal processing. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix algorithms such as matrix multiplication. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using a novel custom coprocessor system for MATrix algorithms based on Reconfigurable Computing (RCMAT). The proposed RCMAT architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.
Resumo:
An attosecond pump-probe scheme that combines the use of a free-electron laser pulse with an ultrashort pulse is applied in order to explore the ultrafast excitation dynamics in Ne. We describe the multielectron dynamics using a new nonperturbative time-dependent R-matrix theory. This theory enables the interaction of ultrashort light fields with multielectron atoms and atomic ions to be determined from first principles. By probing the emission of an inner 2s electron from Ne we are also able to study the bound state population dynamics during the free-electron laser pulse.
Resumo:
In a recent paper [Pramana - J. Phys. 64, 129 (2005)] results have been presented for electron impact excitation collision strengths for transitions among the fine-structure levels of the 2s(2)2p(6) and 2s(2)2p(5)3s configurations of Ni XIX. In this paper we demonstrate through an independent calculation with the relativistic R-matrix code that those results are unreliable and the conclusions drawn are invalid.
Resumo:
We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which propagate the atomic wave function in the presence of the laser field forward in time in the internal and external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet method and an alternative time-dependent method. We also verify the capability of the current approach by applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.
Resumo:
The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules. During the last thirty-four years a series of related R-matrix program packages have been published periodically in CPC. These packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionize the target. In this paper we describe previous term2DRMP,next term a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high performance and grid architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies.
Resumo:
An H-file is used to convey information from the inner-region to the outer-region in R-matrix computations. HBrowse is a workstation tool for displaying a graphical abstraction of a local or remote R-matrix H-file. While it is published as a stand-alone tool for post-processing the output from R-matrix inner-region computations it also forms part of the Graphical R-matrix Atomic Collision Environment (GRACE), HBrowse is written in C and OSF/Motif for the UNIX operating system. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Transcriptome analysis using microarray technology represents a powerful unbiased approach for delineating pathogenic mechanisms in disease. Here molecular mechanisms of renal tubulointerstitial fibrosis (TIF) were probed by monitoring changes in the renal transcriptome in a glomerular disease-dependent model of TIF ( adriamycin nephropathy) using Affymetrix (mu74av2) microarray coupled with sequential primary biological function-focused and secondary
Resumo:
Conductive ionic liquid -poly(ethylene glycol) (IL-PEG) gels have been prepared by gelation of the hydrophobic ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [(C(6)mim] [NTf2]) by the cross-linking reaction of disuccinimidylpropyl PEG monomers with four-arm tetraamine PEG cross-linkers. This is the first time that a crosslinked PEG matrix, such as this, has been used to gel nonaqueous solvents. Initial studies screening other ionic liquids as solvents indicate that the gelation of the ionic liquid is both cation and anion dependent with smaller, coordinating cations disrupting or preventing gel formation.
Resumo:
This paper presents a matrix inversion architecture based on the novel Modified Squared Givens Rotations (MSGR) algorithm, which extends the original SGR method to complex valued data, and also corrects erroneous results in the original SGR method when zeros occur on the diagonal of the matrix either initially or during processing. The MSGR algorithm also avoids complex dividers in the matrix inversion, thus minimising the complexity of potential real-time implementations. A systolic array architecture is implemented and FPGA synthesis results indicate a high-throughput low-latency complex matrix inversion solution. © 2008 IEEE.
Resumo:
Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.