880 resultados para CRYSTAL SILICON CANTILEVERS
Resumo:
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P2(1)/b(C-2h(5)) with four molecules per unit cell. In a Fourier-transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature-dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright (c) 2007 John Wiley & Sons, Ltd.
Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method
Resumo:
The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P-r and a drive voltage V-c of 4.2 mu C/cm(2) and 1.7 V for the film annealed in the conventional furnace and 1.0 mu C/cm(2) and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10(8) polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
(1) C13H13N3O5, Mr = 291.26, P (1) over bar, a = 7.4629(9), b = 7.9203(9), c = 12.126(2) angstrom, alpha = 86.804(5), beta = 78.471(7), gamma = 69.401(8)degrees, V = 657.3(2)angstrom(3), Z = 2, R-1 = 0.0454; (2) C11H12N2O4, Mr=236.23, Pbca, a=7.2713(9), b=14.234(1), c=20.848(3)angstrom, V= 2157.8(4) angstrom(3), Z=8, R-1=0.0504; (3) C13H13N2O3Cl, Mr = 280.70, P2/n, a = 17.344(2), b = 9.237(1), c = 18.398(2) angstrom; beta = 92.61(2)degrees, V = 2944.4(6) angstrom(3), Z = 8, R-1 = 0.0714. The conformational features of three 4-substituted-3-4-dihydropyrimidin-2(1H)-ones were investigated by computational and single crystal X-ray crystallographic studies. The geometries were optimized using semiempirical (AM1) and first principle calculations (B3LYP/6-31G**) methods, the rotational barriers for important functional groups were studied. In all structures the pyrimidinone rings are in a more or less distorted boat conformation. The phenyl and the furane rings are almost perpendicular to the best least-squares plane through the dihydropyrimidinone ring.
Resumo:
Here, we report the crystallographic study of a lectin from Canavalia maritima seeds (ConM) and its relaxant activity on vascular smooth muscle, to provide new insights into the understanding of structure/function relationships of this class of proteins. ConM was crystallized and its structure determined by standard molecular replacement techniques. The amino acid residues, previously suggested incorrectly by manual sequencing, have now been determined as I17, I53, S129, S134, G144, S164, P165, S187, V190, S169, T196, and S202. Analysis of the structure indicated a dimer in the asymmetric unit, two metal binding sites per monomer, and loops involved in the molecular oligomerization. These confer 98% similarity between ConM and other previously described lectins, derived from Canavalia ensiformis and Canavalia brasiliensis. Our functional data indicate that ConM exerts a concentration-dependent relaxant action on isolated aortic rings that probably occurs via an interaction with a specific lectin-binding site on the endothelium, resulting in a release of nitric oxide. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
C4H7BF3KS2, monoclinic, P12(1)/cl (no. 14), a = 14.7374(3) angstrom, b = 9.06121) angstrom, c = 13.5805(2) angstrom, beta = 98.964(4)degrees, V = 1791.4 angstrom(3), Z = 8, R-gt(F) = 0.029, wR(ref)(F-2) = 0.010, T = 296 K.
Resumo:
Electrical conductive textured LaNiO3/SrTiO3 (100) thin films were successfully produced by the polymeric precursor method. A comparison between features of these films of LaNiO3 (LNO) when heat treated in a conventional furnace (CF) and in a domestic microwave (MW) oven is presented. The x-ray diffraction data indicated good crystallinity and a structural orientation along the (h00) direction for both films. The surface images obtained by atomic force microscopy revealed similar roughness values, whereas films LNO-MW present slightly smaller average grain size (similar to 80 nm) than those observed for LNO-CF (60-150 nm). These grain size values were in good agreement with those evaluated from the x-ray data. The transport properties have been studied by temperature dependence of the electrical resistivity rho(T) which revealed for both films a metallic behavior in the entire temperature range studied. The behavior of rho(T) was investigated, allowing to a discussion of the transport mechanisms in these films. (C) 2007 American Institute of Physics.
Resumo:
The compound di(mu,N-Seta2-2-quinoline-2-thiolate)-bis[(N,N-dimethylbenzylamine-C2,N)palladium(II)] was synthesized and studied by IR, NMR and X-ray diffraction: monoclinic, a = 20.138(3), b = 10.831(1), c = 14.973(2) angstrom, beta = 98.04(1)-degrees, Z = 4, space group P2(1)/c, R = 0.032. The compound is dimeric with the two [Pd(N,N-dimethylbenzylamine)]moieties being connected by the two vicinal bridging eta2-N,S-quinoline-2-thiolate anions in a square-planar coordination geometry for the palladium atoms.
Resumo:
We investigated the alignment induced on a nematic liquid crystal (LC) by a photo-aligned polymer film with azo-dye side groups. The orientation of the LC molecules can be manipulated in a reversible manner by irradiating the film with polarized light. We analyzed the competition between the orientation induced by the main chain, through rubbing of the film and that induced by the photo-aligned polymer. Anchoring strength for the different processing conditions are reported. The changes in film morphology caused by rubbing or photo-alignment could be captured by atomic force microscopy. The reversibility of the photo-induced alignment and the competition between the two anchoring mechanisms may allow recording and erasing of information in a LC display.
Resumo:
Structural, electrochemical and spectroscopic data of a new dinuclear copper(II) complex with (+/-)-2-(p- methoxyphenoxy) propionic acid are reported. The complex {tetra-mu-[(+/-)-2-(p-methoxyphenoxy)propionato-O,O']-bis( aqua) dicopper(II)} crystallizes in the monoclinic system, space group P2(1)/n with a = 14.149(1) angstrom, b = 7.495(1) angstrom, c = 19.827(1) angstrom, beta = 90.62(1) and Z = 4. X-ray diffraction data show that the two copper(II) ions are held together through four carboxylate bridges, coordinated as equatorial ligands in square pyramidal geometry. The coordination sphere around each copper ion is completed by two water molecules as axial ligands. Thermogravimetric data are consistent with such results. The ligand has an L' type shape due to the angle formed by the beta-carbon of the propionic chain and the linked p-methoxyphenoxy group. This conformation contributes to the occurrence of a peculiar structure of the complex. The complex retains its dinuclear nature when dissolved in acetonitrile, but it decomposes into the corresponding mononuclear species if dissolved in ethanol, according to the EPR measurements. Further, cyclic voltammograms of the complex in acetonitrile show that the dinuclear species maintains the same structure, in agreement with the EPR data in this solvent. The voltammogram shows two irreversible reduction waves at E-pc = -0.73 and -1.04 V vs. Ag/AgCl assigned to the Cu(II)/ Cu(I) and Cu(I)/Cu degrees redox couples, respectively, and two successive oxidation waves at E-pa = -0.01 and +1.41 V vs. Ag/AgCl, assigned to the Cu degrees/Cu(I) and Cu( I)/Cu( II) redox couples, respectively, in addition to the oxidation waves of the carboxylate ligand.
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
C28H20N4Pd2S2, monoclinic, P12(1)/c1 (No. 14), a = 11.325(1) Angstrom, b = 13.530(1) Angstrom, c = 17.925(1) Angstrom, beta = 106.23(1)degrees, V = 2637.1 Angstrom(3), Z = 4, R-gt(F) = 0.052, wR(ref)(F-2) = 0.129, T = 293 K.