958 resultados para Allogeneic stem cell transplantation
Resumo:
Background information. DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4,6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.
Resumo:
Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The pathways involved in the maintenance of human embryonic stem (hES) cells remain largely unknown, although some signaling pathways have been identified in mouse embryonic stem (mES) cells. Fibroblast feeder layers are used to maintain the undifferentiated growth of hES cells and an examination of the conditioned media (CM) of human neonatal fibroblasts (HNFs) could provide insights into the maintenance of hES cells. The neonatal foreskin fibroblast line (HNF02) used in this study was shown to have a normal 2n = 46, XY chromosomal complement and to support the undifferentiated growth of the Embryonic Stem Cell International Pte. Ltd.-hES3 cell line. The CM of HNF02 was examined using two-dimensional liquid chromatography-tandem mass spectrometry (2-D LCMS) and two-dimensional electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (2-DE/MALDI). A total of 102 proteins were identified, 19 by 2-DE/MALDI, 53 by 2-D LCMS and 30 by both techniques. These proteins were classified into 15 functional groups. Proteins identified in the extracellular matrix and differentiation and growth factor functional categories were considered most likely to be involved in the maintenance of hES cell growth, differentiation and pluripotency as these groups contained proteins involved in a variety of events including cell adhesion, cell proliferation and inhibition of cell proliferation, Writ signaling and inhibition of bone morphogenetic proteins.
Resumo:
The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.
Resumo:
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).
Resumo:
OBJECTIVE To evaluate the frequency and clinical features of endemic and other opportunistic infections in liver or kidney transplant recipients in four transplant centres in different geographical areas of Brazil. METHODS Retrospective analysis of medical and laboratory records of four transplant centres on endemic and other opportunistic infections in liver or kidney transplant recipients. Analyses were performed with spss statistical software. RESULTS From 2001 to 2006, 1046 kidney and 708 liver transplants were registered in all centres. The average age was 42 years. Among 82 (4.7%) cases with infections, the most frequent was tuberculosis (2.0%), followed by systemic protozoal infections (0.7%), toxoplasmosis (0.4%) and visceral leishmaniasis (0.3%). Systemic fungal infections occurred in 0.6%, of which 0.4% were cryptococcosis and 0.2% were histoplasmosis. Dengue was the only systemic viral infection and was registered in two cases (0.1%), of which one was classified as the classic form and the other as dengue haemorrhagic fever. Nocardiosis was described in one case (0.05%). The infectious agents most frequently associated with diarrhoea were Blastocystis sp., Schistosoma mansoni and Strongyloides stercoralis. CONCLUSIONS Opportunistic Infections in transplant patients have a wide spectrum and may vary from asymptomatic to severe infections with high mortality. A better understanding of the epidemiology of endemic pathogens and clinical manifestations can contribute to the establishment of an early diagnosis as well as correct treatment aimed at decreasing morbidity and mortality.
Resumo:
Respiratory viruses can cause significant morbidity in immunocompromised hosts. Human metapneumovirus (hMPV) has been increasingly associated with lower respiratory tract infection in hematopoietic SCT (HSCT) recipients, with mortality rates up to 50%. No data on the occurrence of hMPV infection in HSCT recipients have been reported in the southern hemisphere. We conducted a retrospective study including 228 nasal wash samples from 153 HSCT recipients with respiratory symptoms during 2001, 2002 and 2003. hMPV was detected by real-time PCR with primers complementary to the nucleocapsid region of hMPV genome. Eleven of the 153 patients (7.2%) acquired hMPV infection during the study period (6.4% in 2001, 4.7% in 2002 and 11.1% in 2003). Among the 11 HSCT recipients with hMPV infection, 1 died 8 days after the diagnosis, but the role of hMPV in the patient`s death could not be established. In 2001 and 2003, hMPV group A prevailed over group B. In 2002, both groups were detected equally. hMPV infections were diagnosed in late winter and spring. The frequency of hMPV infection in HSCT recipients living in Brazil was similar to those observed in the northern hemisphere. Sensitive techniques to detect hMPV should be included in the diagnostic assessment of HSCT recipients with respiratory symptoms.
Resumo:
Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15: 17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha protein and disappearance of leukemic cells; however, 30% of APL patients relapse after treatment. One potential mechanism for relapse is the persistence of cancer ""stem"" cells in hematopoietic organs after treatment. Using a novel sorting strategy we developed to isolate murine myeloid cells at distinct stages of differentiation, we identified a population of committed myeloid cells (CD34(+), c-kit(+), Fc gamma RIII/II(+), Gr1(int)) that accumulates in the spleen and bone marrow in a murine model of APL. We observed that these cells are capable of efficiently generating leukemia in recipient mice, demonstrating that this population represents the APL cancer-initiating cell. These cells down-regulate the transcription factor CCAAT/enhancer binding protein alpha (C/EBP alpha) possibly through a methylation-dependent mechanism, indicating that C/EBP alpha deregulation contributes to transformation of APL cancer-initiating cells. Our findings provide further understanding of the biology of APL by demonstrating that a committed transformed progenitor can initiate and propagate the disease. (Blood. 2009; 114: 5415-5425)
Resumo:
In the present study, we analyzed AURKA and AURKB gene expression in 70 acute myeloid leukemia (AML) patients. There was no difference between leukemic samples and bone marrow mononuclear cells (BMMCs, n = 8) or CD34(+) progenitors (n = 10) from healthy donors. High white blood cells (WBC) counts were observed in the AURKA(+) and AURKB(+) groups, but no significant differences regarding age, gender, platelet counts or frequency of FLT3-ITD mutations. AURKA, but not AURKB, expression was independently associated with high WBC counts (OR: 3.15, 95% CI 1.07-9.24, p = 0.03). Moreover, the majority of cases that overexpressed AURKA and AURKB presented unfavorable cytogenetic abnormalities (p < 0.001). In conclusion, we described a significant association between overexpression of AURKA/B and cytogenetics findings in AML, which may be relevant to new therapeutic approaches, based on Aurora kinase inhibitors. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.
Resumo:
Background: The most primitive leukemic precursor in acute myeloid leukemia (AML) is thought to be the leukemic stem cell (LSC), which retains the properties of self-renewal and high proliferative capacity and quiescence of the hematopoietic stem cell. LSC seems to be immunophenotypically distinct and more resistant to chemotherapy than the more committed blasts. Considering that the multidrug resistance (MDR) constitutive expression may be a barrier to therapy in AML, we have investigated whether various MDR transporters were differentially expressed at the protein level by different leukemic subsets. Methods: The relative expression of the drug-efflux pumps P-gp, MRP, LRP, and BCRP was evaluated by mean fluorescence index (MFI) and the Kolmogorov-Smirnov analysis (D values) in five leukemic subpopulations: CD34(+)CD38(-)CD123(+) (LSCs), CD34(+)CD38(+)CD123(-), CD34(+)CD38(+)CD123(+), CD34(+)CD38(+)CD123(-), and CD34(-) mature cells in 26 bone marrow samples of CD34(+) AML cases. Results: The comparison between the two more immature subsets (LSC versus CD34(+)CD38(-)CD123(-) cells) revealed a higher P-gp, MRP, and LRP expression in LSCs. The comparative analysis between LSCs and subsets of intermediate maturation (CD34(+)CD38(+)) demonstrated the higher BCRP expression in the LSCs. In addition, P-gp expression was also significantly higher in the LSC compared to CD34(+)CD38(+)CD123(-) subpopulation. Finally, the comparative analysis between LSC and the most mature subset (CD34(-)) revealed higher MRP and LRP and lower P-gp expression in the LSCs. Conclusions: Considering the cellular heterogeneity of AML, the higher MDR transporters expression at the most immature, self-renewable, and quiescent LSC population reinforces that MDR is one of the mechanisms responsible for treatment failure. (C) 2008 Clinical Cytometry Society.
Resumo:
Oral squamous cell carcinoma (OSCC) is a cancerous lesion with high incidence worldwide. The immunoregulatory events leading to OSCC persistence remain to be elucidated. Our hypothesis is that regulatory T cells (Tregs) are important to obstruct antitumor immune responses in patients with OSCC. In the present study, we investigated the frequency, phenotype, and activity of Tregs from blood and lesions of patients with OSCC. Our data showed that > 80% of CD4(+)CD25(+) T cells isolated from PBMC and tumor sites express FoxP3. Also, these cells express surface Treg markers, such as GITR, CD45RO, CD69, LAP, CTLA-4, CCR4, and IL-10. Purified CD4(+)CD25(+) T cells exhibited stronger suppressive activity inhibiting allogeneic T-cell proliferation and IFN-gamma production when compared with CD4(+)CD25(+) T cells isolated from healthy individuals. Interestingly, approximately 25% of CD4(+)CD25(-) T cells of PBMC from patients also expressed FoxP3 and, although these cells weakly suppress allogeneic T cells proliferative response, they inhibited IFN-gamma and induced IL-10 and TGF-beta secretion in these co-cultures. Thus, our data show that Treg cells are present in OSCC lesions and PBMC, and these cells appear to suppress immune responses both systemically and in the tumor microenvironment.
Resumo:
The study investigated whether chronic ethanol (ETH) intake and subsequent ETH exposure of cell cultures affects osteoblast differentiation by evaluating key parameters of in vitro osteogenesis. Rats were treated with 5-20% (0.85-3.43 mM) ETH, increasing by 5% per week for a period of 4 weeks (habituation), after which the 20% level was maintained for 15 days (chronic intake). Bone-marrow stem cells from control (CONT) or ETH-treated rats were cultured in osteogenic medium which was either supplemented (ETH) or not supplemented (CONT) with 1.3 mm ethanol. Thus, four groups relating to rat treatment/culture supplementation were evaluated: (1) CONT/CONT, (2) ETH/CONT, (3) CONT/ETH and (4) ETH/ETH Cell morphology, proliferation and viability, total protein content, alkaline phosphatase (ALP) activity and bone-like nodule formation were evaluated. Chronic ethanol intake significantly reduced both food and liquid consumption and body weight gain. No difference was seen in cell morphology among treatments. Cell number was affected at 7 and 10 days as follows: CONT/CONT = CONT/ETH < ETH/CONT = ETH/ETH. Doubling time between 3 and 10 days was greater in groups of CONT animals: ETH/ETH = ETH/CONT < CONT/ETH = CONT/CONT. Cell viability and ALP activity were not affected by either animal treatment or culture exposure to ethanol. At day 21, the total protein content was affected as follows: ETH/ETH = CONT/ETH < ETH/CONT = CONT/CONT. Bone-like nodule formation was affected as follows: ETH/ETH < CONT/ETH < ETH/CONT < CONT/CONT. These results show that chronic ethanol intake, followed by the exposure of osteoblasts to ethanol, inhibited the differentiation of osteoblasts, as indicated by an increased proliferation rate and reduced bone-like nodule formation. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
A dictum long-held has stated that the adult mammalian brain and spinal cord are not capable of regeneration after injury. Recent discoveries have, however, challenged this dogma. In particular, a more complete understanding of developmental neurobiology has provided an insight into possible ways in which neuronal regeneration in the central nervous system may be encouraged. Knowledge of the role of neurotrophic factors has provided one set of strategies which may be useful in enhancing CNS regeneration. These factors can now even be delivered to injury sites by transplantation of genetically modified cells. Another strategy showing great promise is the discovery and isolation of neural stem cells from adult CNS tissue. It may become possible to grow such cells in the laboratory and use these to replace injured or dead neurons. The biological and cellular basis of neural injury is of special importance to neurosurgery, particularly as therapeutic options to treat a variety of CNS diseases becomes greater. (C) 2002 Published by Elsevier Science Ltd.