926 resultados para Algoritmo evolucionário


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hierarchical fuzzy control scheme is applied to improve vibration suppression by using an electro-mechanical system based on the lever principle. The hierarchical intelligent controller consists of a hierarchical fuzzy supervisor, one fuzzy controller and one robust controller. The supervisor combines controllers output signal to generate the control signal that will be applied on the plant. The objective is to improve the performance of the electromechanical system, considering that the supervisor could take advantage of the different techniques based controllers. The robust controller design is based on a linear mathematical model. Genetic algorithms are used on the fuzzy controller and the supervisor tuning, which are based on non-linear mathematical model. In order to attest the efficiency of the hierarchical fuzzy control scheme, digital simulations were employed. Some comparisons involving the optimized hierarchical controller and the non-optimized hierarchical controller will be made to prove the efficiency of the genetic algorithms and the advantages of its use

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In conventional robot manipulator control, the desired path is specified in cartesian space and converted to joint space through inverse kinematics mapping. The joint references generated by this mapping are utilized for dynamic control in joint space. Thus, the end-effector position is, in fact, controlled indirectly, in open-loop, and the accuracy of grip position control directly depends on the accuracy of the available kinematic model. In this report, a new scheme for redundant manipulator kinematic control, based on visual servoing is proposed. In the proposed system, a robot image acquired through a CCD camera is processed in order to compute the position and orientation of each link of the robot arm. The robot task is specified as a temporal sequence of reference images of the robot arm. Thus, both the measured pose and the reference pose are specified in the same image space, and its difference is utilized to generate a cartesian space error for kinematic control purposes. The proposed control scheme was applied in a four degree-of-freedom planar redundant robot arm, experimental results are shown

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reinforcement learning is a machine learning technique that, although finding a large number of applications, maybe is yet to reach its full potential. One of the inadequately tested possibilities is the use of reinforcement learning in combination with other methods for the solution of pattern classification problems. It is well documented in the literature the problems that support vector machine ensembles face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately with the imbalances that arise in those situations. Several alternatives have been proposed, with varying degrees of success. This dissertation presents a new approach to building committees of support vector machines. The presented algorithm combines Adaboost algorithm with a layer of reinforcement learning to adjust committee parameters in order to avoid that imbalances on the committee components affect the generalization performance of the final hypothesis. Comparisons were made with ensembles using and not using the reinforcement learning layer, testing benchmark data sets widely known in area of pattern classification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of wireless sensor and actuator networks in industry has been increasing past few years, bringing multiple benefits compared to wired systems, like network flexibility and manageability. Such networks consists of a possibly large number of small and autonomous sensor and actuator devices with wireless communication capabilities. The data collected by sensors are sent directly or through intermediary nodes along the network to a base station called sink node. The data routing in this environment is an essential matter since it is strictly bounded to the energy efficiency, thus the network lifetime. This work investigates the application of a routing technique based on Reinforcement Learning s Q-Learning algorithm to a wireless sensor network by using an NS-2 simulated environment. Several metrics like energy consumption, data packet delivery rates and delays are used to validate de proposal comparing it with another solutions existing in the literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyzes the performance of a parallel implementation of Coupled Simulated Annealing (CSA) for the unconstrained optimization of continuous variables problems. Parallel processing is an efficient form of information processing with emphasis on exploration of simultaneous events in the execution of software. It arises primarily due to high computational performance demands, and the difficulty in increasing the speed of a single processing core. Despite multicore processors being easily found nowadays, several algorithms are not yet suitable for running on parallel architectures. The algorithm is characterized by a group of Simulated Annealing (SA) optimizers working together on refining the solution. Each SA optimizer runs on a single thread executed by different processors. In the analysis of parallel performance and scalability, these metrics were investigated: the execution time; the speedup of the algorithm with respect to increasing the number of processors; and the efficient use of processing elements with respect to the increasing size of the treated problem. Furthermore, the quality of the final solution was verified. For the study, this paper proposes a parallel version of CSA and its equivalent serial version. Both algorithms were analysed on 14 benchmark functions. For each of these functions, the CSA is evaluated using 2-24 optimizers. The results obtained are shown and discussed observing the analysis of the metrics. The conclusions of the paper characterize the CSA as a good parallel algorithm, both in the quality of the solutions and the parallel scalability and parallel efficiency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a new technique for phasor estimation applied in microprocessor numerical relays for distance protection of transmission lines, based on the recursive least squares method and called least squares modified random walking. The phasor estimation methods have compromised their performance, mainly due to the DC exponential decaying component present in fault currents. In order to reduce the influence of the DC component, a Morphological Filter (FM) was added to the method of least squares and previously applied to the process of phasor estimation. The presented method is implemented in MATLABr and its performance is compared to one-cycle Fourier technique and conventional phasor estimation, which was also based on least squares algorithm. The methods based on least squares technique used for comparison with the proposed method were: forgetting factor recursive, covariance resetting and random walking. The techniques performance analysis were carried out by means of signals synthetic and signals provided of simulations on the Alternative Transient Program (ATP). When compared to other phasor estimation methods, the proposed method showed satisfactory results, when it comes to the estimation speed, the steady state oscillation and the overshoot. Then, the presented method performance was analyzed by means of variations in the fault parameters (resistance, distance, angle of incidence and type of fault). Through this study, the results did not showed significant variations in method performance. Besides, the apparent impedance trajectory and estimated distance of the fault were analysed, and the presented method showed better results in comparison to one-cycle Fourier algorithm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose in this work a software architecture for robotic boats intended to act in diverse aquatic environments, fully autonomously, performing telemetry to a base station and getting this mission to be accomplished. This proposal aims to apply within the project N-Boat Lab NatalNet DCA, which aims to empower a sailboat navigating autonomously. The constituent components of this architecture are the memory modules, strategy, communication, sensing, actuation, energy, security and surveillance, making these systems the boat and base station. To validate the simulator was developed in C language and implemented using the graphics API OpenGL resources, whose main results were obtained in the implementation of memory, performance and strategy modules, more specifically data sharing, control of sails and rudder and planning short routes based on an algorithm for navigation, respectively. The experimental results, shown in this study indicate the feasibility of the actual use of the software architecture developed and their application in the area of autonomous mobile robotics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian networks are powerful tools as they represent probability distributions as graphs. They work with uncertainties of real systems. Since last decade there is a special interest in learning network structures from data. However learning the best network structure is a NP-Hard problem, so many heuristics algorithms to generate network structures from data were created. Many of these algorithms use score metrics to generate the network model. This thesis compare three of most used score metrics. The K-2 algorithm and two pattern benchmarks, ASIA and ALARM, were used to carry out the comparison. Results show that score metrics with hyperparameters that strength the tendency to select simpler network structures are better than score metrics with weaker tendency to select simpler network structures for both metrics (Heckerman-Geiger and modified MDL). Heckerman-Geiger Bayesian score metric works better than MDL with large datasets and MDL works better than Heckerman-Geiger with small datasets. The modified MDL gives similar results to Heckerman-Geiger for large datasets and close results to MDL for small datasets with stronger tendency to select simpler network structures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work considers the development of a filtering system composed of an intelligent algorithm, that separates information and noise coming from sensors interconnected by Foundation Fieldbus (FF) network. The algorithm implementation will be made through FF standard function blocks, with on-line training through OPC (OLE for Process Control), and embedded technology in a DSP (Digital Signal Processor) that interacts with the fieldbus devices. The technique ICA (Independent Component Analysis), that explores the possibility of separating mixed signals based on the fact that they are statistically independent, was chosen to this Blind Source Separation (BSS) process. The algorithm and its implementations will be Presented, as well as the results