996 resultados para 205-1254
Resumo:
Previous studies have reported that different schemes for coupling Monte Carlo (MC) neutron transport with burnup and thermal hydraulic feedbacks may potentially be numerically unstable. This issue can be resolved by application of implicit methods, such as the stochastic implicit mid-point (SIMP) methods. In order to assure numerical stability, the new methods do require additional computational effort. The instability issue however, is problem-dependent and does not necessarily occur in all cases. Therefore, blind application of the unconditionally stable coupling schemes, and thus incurring extra computational costs, may not always be necessary. In this paper, we attempt to develop an intelligent diagnostic mechanism, which will monitor numerical stability of the calculations and, if necessary, switch from simple and fast coupling scheme to more computationally expensive but unconditionally stable one. To illustrate this diagnostic mechanism, we performed a coupled burnup and TH analysis of a single BWR fuel assembly. The results indicate that the developed algorithm can be easily implemented in any MC based code for monitoring of numerical instabilities. The proposed monitoring method has negligible impact on the calculation time even for realistic 3D multi-region full core calculations. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The diversity of gynogenetic, artificial sex reversal and natural silver carp and bighead carp is examined using randomly amplified polymorphic DNA (RAPD) method. All of the 187 bands are obtained and 19 (10.16%) of them are polymorphic in gynogenetic silver carp. Meanwhile 32 (15.61%) out of 205 bands are polymorphic in control group. In gynogenetic bighead carp a total of 232 bands are identified and 11 (4.74%) out of them are polymorphic, while 25 (10.37%) out of 241 bands are polymorphic in control group. The genetic distance of four populations is calculated and it is 0.102 and 0.023 for gynogenetic silver carp and gynogenetic bighead carp respectively. The values of natural silver carp and bighead carp are 0.161 and 0.104. From the UPGMA trees constructed based on genetic distance, the sex reversal individuals that match with the gynogenetic female individuals are picked out. A new breeding process of establishing a pure line is developed.
Resumo:
Different protocols of food deprivation were used to bring two groups of juvenile three-spined sticklebacks Gaslerosteus aculeatus to the same reduced body mass in comparison with a control group fed daily ad libitum. One group experienced I week or deprivation then 2 weeks on maintenance rations. The second group experienced I week of ad lithium feeding followed by 2 weeks of deprivation. The deprived groups were reduced to a mean mass ore. 80% of controls. The compensatory growth response shown when ad libitum feeding was resumed was independent of the trajectory by which the three-spined sticklebacks had reached the reduced body mass. The compensatory response was Sufficient to return the deprived groups to the mass and length trajectories shown by the control group within 4 weeks. There was full compensation for dry mass and total lipid, but incomplete compensation for lipid-free dry mass. Hyperphagia and increased growth efficiency were present in the re-feeding phase, but there was a lag of a week before the hyperphagia was established. The consistency of the compensatory response of immature three-spined sticklebacks provides a potential model system for the analysis and prediction of appetite and growth in teleosts. (C) 2003 The Fisheries Society of the British isles.
Resumo:
Six species of Rhyacodrilinae (Oligochaeta: Tubificidae) are reported from intertidal and shallow water subtidal habitats around Hainan Island in southern China. Four species are new to science: Ainudrilus pauciseta n. sp., Heterodrilus chenianus n. sp., Heterodrilus nudus n. sp., and Heterodrilus uniformis n. sp. Japanese material of Ainudrilus lutulentus (Erseus, 1984) is also briefly described. Hitherto, 27 species belonging to Tubificidae have been recorded from Hainan.
Resumo:
Parodontophora limnophila sp. nov. is described from Poyang Lake, the largest freshwater lake of China. It is characterized by having an amphid with its posterior end close to the base of the stoma, relatively short cephalic setae, opisthocephalic setae arranged as two subdorsal groups of three longitudinally arranged setae and two single subventral setae, excretory pore at the level of the anterior part of the stoma and renette gland 34-47% of the oesophageal length. To date, the new species is the only Parodontophora species found in freshwater habitats.
Resumo:
Sapphire substrates were nanopatterned by dry (inductively coupled plasma, ICP) etching to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs on nanopatterned sapphire substrates (NPSS) were fabricated by metal organic chemical vapor deposition (MOCVD). The characteristics of LEDs fabricated on NPSS prepared by dry etching were studied. The light output power and wall-plug efficiency of the LEDs fabricated on NPSS were greater than those of the conventional LEDs fabricated on common planar sapphire substrates when the injection currents were the same. The LEDs on NPSS and common planar sapphire substrates have similar I-V characteristics.
Resumo:
Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.
Resumo:
Crack-free GaN films have been achieved by inserting an Indoped low-temperature (LT) AlGaN interlayer grown on silicon by metalorganic chemical vapor deposition. The relationship between lattice constants c and a obtained by X-ray diffraction analysis shows that indium doping interlayer can reduce the stress in GaN layers. The stress in GaN decreases with increasing trimethylindium (TMIn) during interlayer growth. Moreover, for a smaller TMIn flow, the stress in GaN decreases dramatically when In acts as a surfactant to improve the crystallinity of the AlGaN interlayer, and for a larger TMIn flow, the stress will increase again. The decreased stress leads to smoother surfaces and fewer cracks for GaN layers by using an In-doped interlayer than by using an undoped interlayer. In doping has been found to enhance the lateral growth and reduce the growth rate of the c face. It can explain the strain relief and cracks reduction in GaN films. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The response of photonic memory effect in I-V characteristics of a specially designed photonic memory cell was reported. When the cell is biased in a storage mode, the optical excitation with the photon's energy larger than the energy gap gives rise to a step-like jump in the current. A set-up was used to measure the transient photocurrent at the biases where the step-like jump showed up. It is proved that the falling transient edge of the photocurrent, as the photoexcitation turns off, mainly maps the decaying of electrons and holes, which were previously stored in the cell during the illumination. Its time constant is a measure of photonic memory time.
Resumo:
The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.
Resumo:
Undoped hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared at low temperature by hot wire chemical vapor deposition (HWCVD). Microstructures of the mu c-Si:H films with different H-2/SiH4 ratios and deposition pressures have been characterized by infrared spectroscopy X-ray diffraction (XRD), Raman scattering, Fourier transform (FTIR), cross-sectional transmission electron microscopy (TEM) and small angle X-ray scattering (SAX). The crystallization of silicon thin film was enhanced by hydrogen dilution and deposition pressure. The TEM result shows the columnar growth of mu c-Si:H thin films. An initial microcrystalline Si layer on the glass substrate, instead of the amorphous layer commonly observed in plasma enhanced chemical vapor deposition (PECVD), was observed from TEM and backside incident Raman spectra. The SAXS data indicate an enhancement of the mass density of mu c-Si:H films by hydrogen dilution. Finally, combining the FTIR data with the SAXS experiment suggests that the Si--H bonds in mu c-Si:H and in polycrystalline Si thin films are located at the grain boundaries. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(3 1 1)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows differing from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-As-x solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [0 1 (1) over bar] and [(2) over bar 3 3], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between the neighboring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. The photoluminescence (PL) result demonstrates that QDs grown on (3 1 1)B have the narrowest linewidth and the strongest integrated intensity, compared to those on (1 0 0) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The initial InAs growth on InP(1 0 0) during molecular beam epitaxy has been investigated. The as-grown islands were shaped like nanowires and formed dense arrays over the entire surface in the 3-6 monolayer InAs deposition range. The wires were oriented along the [(1) over bar 1 0] direction. Transmission electron microscopy images confirm that the wires are coherently grown on the substrates. Our results suggest that the coherent wire-shaped island formation may be a possible method to fabricate self-organized InAs nanowires. (C) 1999 Elsevier Science B.V. All rights reserved.