1000 resultados para Álgebra escolar e álgebra acadêmica
Resumo:
Neste artigo os autores descrevem um caso de arterite de Takayasu em uma criança de apenas 3 anos de idade, ressaltando-se a raridade dessa doença nessa faixa etária. A criança foi atendida em serviço de urgência em estado pós-comicial de convulsão tônico-clônica generalizada. Após exame clínico detalhado, vasta propedêutica e evolução do quadro clínico, fez-se o diagnóstico de doença de Takayasu com grave envolvimento cardíaco e arterial. O relato desse caso alerta pediatras e cardiologistas para o reconhecimento dessa entidade em crianças de baixa idade, nos países em que ela é pouco diagnosticada.
Resumo:
FUNDAMENTO: Evidências têm sugerido que uma parcela importante de crianças e adolescentes apresenta níveis elevados de colesterol total. OBJETIVO: Estimar a prevalência de hipercolesterolemia e fatores associados em escolares de 7 a 12 anos de idade. MÉTODOS: Estudo transversal de base escolar de uma amostra aleatória composta por 1.294 escolares de 7 a 12 anos, de Caxias do Sul (RS). Os escolares responderam a uma entrevista com informações sobre nível socioeconômico, hábitos alimentares e hábitos de atividade física e de lazer. Foram realizadas medidas de colesterol total, de aptidão cardiorrespiratória, de massa corporal, estatura para o cálculo do índice de massa corporal. Para o tratamento dos dados foram utilizadas as análises univariada, bivariada e multivariada. RESULTADOS: A análise multivariada identificou que indivíduos com o nível socioeconômico alto (OR: 1,70; IC: 1,05-2,75), do sexo feminino (OR: 1,32; IC: 1,03-1,67), e com excesso de peso (OR: 1,40; IC: 1,10-1,77) apresentam chances aumentadas de terem colesterol total aumentado (> 3º tercil). CONCLUSÃO: Elevados níveis de colesterol total em escolares de 7 a 12 anos estão associados ao nível socioeconômico alto, ao sexo feminino e ao excesso de peso. O incentivo a um estilo de vida ativo e a hábitos alimentares adequados pode auxiliar no controle dos níveis de colesterol e diminuir os fatores de risco.
Resumo:
We give a case-free proof that the lattice of noncrossing partitions associated to any finite real reflection group is EL-shellable. Shellability of these lattices was open for the groups of type Dn and those of exceptional type and rank at least three.
Resumo:
We present in this article several possibilities to approach the height of an algebraic curve defined over a number field : as an intersection number via the Arakelov theory, as a limit point of the heights of its algebraic points and, finally, using the minimal degree of Belyi functions.
Resumo:
This paper is devoted to the statement known as the Bogomolov conjecture on small points. We present the outline of Zhang’s proof of the generalized version of the conjecture. An explicit bound for the height of a non-torsion variety of an abelian variety is obtained in the frame of Arakelov theory. Some further developments are mentioned.
Resumo:
Finitely generated linear semigroups over a field K that have intermediate growth are considered. New classes of such semigroups are found and a conjecture on the equivalence of the subexponential growth of a finitely generated linear semigroup S and the nonexistence of free noncommutative subsemigroups in S, or equivalently the existence of a nontrivial identity satisfied in S, is stated. This ‘growth alternative’ conjecture is proved for linear semigroups of degree 2, 3 or 4. Certain results supporting the general conjecture are obtained. As the main tool, a new combinatorial property of groups is introduced and studied.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We consider the Kudla-Millson lift from elliptic modular forms of weight (p+q)/2 to closed q-forms on locally symmetric spaces corresponding to the orthogonal group O(p,q). We study the L²-norm of the lift following the Rallis inner product formula. We compute the contribution at the Archimedian place. For locally symmetric spaces associated to even unimodular lattices, we obtain an explicit formula for the L²-norm of the lift, which often implies that the lift is injective. For O(p,2) we discuss how such injectivity results imply the surjectivity of the Borcherds lift.
Resumo:
We characterize the values of the stable rank for Leavitt path algebras, by giving concrete criteria in terms of properties of the underlying graph.
Resumo:
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C¤-algebras. In particular, our results apply to the largest class of simple C¤-algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C¤-algebras. We also prove in passing that the Kuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for all simple unital C¤-algebras of interest.
Resumo:
We prove the Bogomolov conjecture for a totally degenerate abelian variety A over a function field. We adapt Zhang's proof of the number field case replacing the complex analytic tools by tropical analytic geometry. A key step is the tropical equidistribution theorem for A at the totally degenerate place.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We present Shelah’s famous theorem in a version for modules, together with a self-contained proof and some examples. This exposition is based on lectures given at CRM in October 2006.
Resumo:
"Vegeu el resum a l'inici del documents del fitxer adjunt"
Resumo:
We describe a method for determining the minimal length of elements in the generalized Thompson's groups F(p). We compute the length of an element by constructing a tree pair diagram for the element, classifying the nodes of the tree and summing associated weights from the pairs of node classifications. We use this method to effectively find minimal length representatives of an element.