904 resultados para ultra-low pressure
Resumo:
The drift of 52 icebergs tagged with GPS buoys in the Weddell Sea since 1999 has been investigated with respect to prevalent drift tracks, sea ice/iceberg interaction, and freshwater fluxes. Buoys were deployed on small- to medium-sized icebergs (edge lengths ? 5 km) in the southwestern and eastern Weddell Sea. The basin-scale iceberg drift of this size class was established. In the western Weddell Sea, icebergs followed a northward course with little deviation and mean daily drift rates up to 9.5 ± 7.3 km/d. To the west of 40°W the drift of iceberg and sea ice was coherent. In the highly consolidated perennial sea ice cover of 95% the sea ice exerted a steering influence on the icebergs and was thus responsible for the coherence of the drift tracks. The northward drift of buoys to the east of 40°W was interrupted by large deviations due to the passage of low-pressure systems. Mean daily drift rates in this area were 11.5 ± 7.2 km/d. A lower threshold of 86% sea ice concentration for coherent sea ice/iceberg movement was determined by examining the sea ice concentration derived from Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) satellite data. The length scale of coherent movement was estimated to be at least 200 km, about half the value found for the Arctic Ocean but twice as large as previously suggested. The freshwater fluxes estimated from three iceberg export scenarios deduced from the iceberg drift pattern were highly variable. Assuming a transit time in the Weddell Sea of 1 year, the iceberg meltwater input of 31 Gt which is about a third of the basal meltwater input from the Filchner Ronne Ice Shelf but spreads across the entire Weddell Sea. Iceberg meltwater export of 14.2 × 103 m3 s?1, if all icebergs are exported, is in the lower range of freshwater export by sea ice.
Resumo:
An example of cordierite-bearing gneiss that is part of a high-grade gneiss-migmatite sequence is described from the Hatch Plain in the Read Mountains of the Shackleton Range, Antarctica, for the first time. The cordierite-bearing rocks constitute the more melanosomic portions of the metatectic and migmatitic rocks that are associated with relict granulite facies rocks such as enderbitic granulite and enderbitic garnet granulite. The predominant mineral assemblage in the cordierite-bearing rocks is chemically homogeneous cordierite (XMg 0.61) and biotite (XMg 0.47), strongly zoned garnet (XMg 0.18-0.11), sillimanite, K-feldspar (Or81-94Ab5-18An0.6), plagioclase (An28), and quartz. Inclusions of sillimanite and biotite relics in both garnet and cordierite indicate that garnet and cordierite were produced by the coupled, discontinuous reaction biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H2O. Various garnet-biotite and garnet-cordierite geothermometers and sillimanite-quartz-plagioclase-garnet-cordierite geobarometers yield a continuous clockwise path in the P-T diagram. The P-T conditions for equilibrium between garnet core and cordierite and between garnet core and biotite during peak metamorphism and migmatization were estimated to be 690 °C at 5-6 kb. This was followed by cooling and unloading with continuously changing conditions down to 515 °C at 2-3 kb. This low-pressure re-equilibration correlates with the pressure conditions evaluated by SCHULZE (1989) for the widespread granitic gneisses of the Read Group in the Shackleton Range. The associated relict enderbitic granulites representing low-pressure type granulite (8 kb; 790 °C) are comparable to similar low-pressure granulites from the East Antarctic craton. They were either formed by under-accretion processes after collision (WELLS 1979, p. 217) or they are a product of remetamorphism at P-T conditions intermediate between granulite and amphibolite facies. A model of a multiple imbrication zone with crustal thickening (CUTHBERT et al. 1983) is discussed for the formation of the relict granulites of the central and eastern Read Mountains which show higher pressure conditions (8-12 kb, SCHULZE & OLESCH 1990), indicating a Proterozoic crustal thickness of at least 40 km.
Resumo:
En un área de aprox. 2 000 000 ha del sur de Córdoba (Argentina) se evaluaron los equipos de riego con el fin de conocer su funcionamiento, el grado de uniformidad con que trabajan y la eficiencia de riego lograda por los productores. Se realizaron 21 evaluaciones sobre equipos operando de acuerdo con la programación establecida por sus usuarios; 14 sobre pivote, una sobre avance lateral, 4 sobre enrolladores (3 de cañón y uno de baja presión) y 2 sobre side roll. Los parámetros de calidad de riego brindaron coeficiente medio de uniformidad = 81,4 %, con uniformidad de distribución = 73,23 %. En el 80 % de los casos, la lámina aplicada fluctuó entre 10 y 20 mm siendo su promedio = 17 mm. De los resultados se puede inferir que -en general- la superficie asignada a cada equipo es siempre mayor que su capacidad para realizar oportunamente una óptima reposición del agua al suelo y que, si bien los coeficientes de uniformidad y distribución del agua pueden considerarse aceptables, la programación del riego es mala en todos los establecimientos evaluados poniéndose de manifiesto en la baja eficiencia de almacenamiento y repercutiendo directamente sobre la producción de los cultivos regados.
Resumo:
La finalidad de este trabajo prospectivo es determinar la eficacia del método KTPláser (Kalium-Titanyl-Phosphat) de 80 Watt para la vaporización y eliminación del adenoma prostático. Se analizan también los resultados que se obtienen al combinar el método KTP-láser de 80 watt con la RTUP de baja presión hidráulica. Para ello 225 pacientes con HBP sintomática fueron tratados entre Agosto del 2004 y Mayo del 2006 con el KTP-Láser o combinado con RUTP a baja presión. La resección adicional fue efectuada en aquellos pacientes con adenomas grandes o por tener el lóbulo medio acentuado. El efecto ablativo fue controlado al final de la operación por medio de TRUS (sonografía prostática transrectal). 225 pacientes tratados en 2 grupos, el grupo 1 (n:50) aquéllos con sólo tratamiento láser, sobre todo pequeños adenomas y el grupo 2 (n:175) con tratamiento combinado de KTP-láser y RTUP a baja presión en adenomas grandes. La flujometría máxima demuestra una mejoría del 44,5% en el grupo 1 entre antes y después del tratamiento, en el grupo 2 la diferecia es de 122,4%. Nuestro estudio pone de manifiesto, las ventajas de combinar ambos procedimientos quirúrgicos para obtener un mejor resultado en la ablación del adenoma prostático sobre todo en próstatas de gran tamaño.
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.
Resumo:
Mineral compositions of the plagioclase-bearing ultramafic tectonites dredged and cored seaward of the continental slope of the Galicia margin (Leg 103, Site 637) were compared to mineral compositions from onshore low-pressure ultramafic bodies (southeastern Ronda, western Pyrenees, and Lizard Point), on the basis of standardized (30-s counting time) probe analyses. The comparison was extended to some plagioclase-free harzburgites related to ophiolites (Santa Elena in Costa Rica, north Oman, and the Humboldt body in New Caledonia) on the basis of new analytical data and data from the literature. The behavior of Cr, Na, Al, Mg, Fe, Ni, and Ti in olivine, pyroxenes, and spinel was examined in order to distinguish between the effects of partial melting and mineral facies change, from the spinel to plagioclase stability fields. The peridotite from the Galicia margin appears slightly depleted in major incompatible elements and experienced a minor partial melting. However, it experienced large scale but heterogeneous recrystallization in the plagioclase field. These features are very similar to those observed in Ronda, whereas in the western Pyrenees the minerals exemplify a very minor partial-melting event (or none at all) and have retained compositions corresponding to those of the relatively high-pressure Seiland sub facies. The minerals from the Lizard Point peridotite have characteristics (low Mg/(Mg + Fe) ratio; high Cr/(Cr + Al) ratio in spinel) more related to cumulate from a differentiated tholeiitic melt than related to ophiolitic tectonite. Diffusion profiles of Al and Cr across pyroxenes and spinel show that recrystallization features occurred at different speeds or temperatures in the different bodies. The pyroxenes from Ronda would have experienced recrystallization about 14 times faster than the peridotite from the Galicia margin. The western Pyrenean lherzolites also experienced rapid recrystallization; nevertheless, because they are of a different mineral facies, the data are not directly comparable to that from Ronda and Galicia. The harzburgite at Santa Elena as well as a xenolith from alkali basalt exemplify rapid cooling characterized by very weak re-equilibration. Recrystallization speed is related to emplacement speed in the present geological environment. The slow-rising Galicia margin peridotite was emplaced by thinning of the lithospheric subcontinental mantle near an incipient mid-oceanic ridge. The fast-rising peridotites from Ronda and the western Pyrenees were hot diapirs emplaced from the asthenosphere along transcurrent faults, possibly related to the opening of the Atlantic Ocean.
Resumo:
Reentry of Hole 462A during Leg 89 resulted in the penetration of a further 140 m of basalt sheet-flows similar to those found during Leg 61 at the same site. Twelve volcanic units (45 to 56) were recognized, comprising a series of rapidly extruded, interlayered aphyric and poorly clinopyroxene-plagioclase-olivine phyric, nonvesicular basalts. All exhibit variable, mild hydration and oxidation, relative to fresh oceanic basalts, produced under reducing, low-CO2-activity conditions within the zeolite facies. Secondary assemblages are dominated by smectites, zeolites, and pyrite, produced by low-temperature reaction with poorly oxygenated seawater. No systematic mineralogical or chemical changes are observed with depth, although thin quenched units and more massive hypocrystalline units exhibit slightly different alteration parageneses. Chemically, the basalts are olivine- and quartz-normative tholeiites, characterized by low incompatible-element abundances, similar to mildly enriched MORB (approaching T-type), with moderate, chrondite-normalized, large-ionlithophile- element depletion patterns and generally lower or near-chrondritic ratios for many low-distribution-coefficient (KD) element pairs. In general, relative to cyclic MORB chemical variation, they are uniform throughout, although 3 chemical megagroups and 22 subgroups are recognized. It is considered that the megagroups represent separate low-pressure-fractionated systems (olivine + Plagioclase ± clinopyroxene), whereas minor variations within them (subgroups) indicate magma mixing and generation of near-steady-state conditions. Overall, relatively minor fractionation coupled with magma mixing produced a series of compositionally uniform lavas. Parental melts were produced by similar degrees of partial melting, although the source may have varied slightly in LIL-element content.
Resumo:
A ridge of strongly serpentinized, plagioclase-bearing peridotite crops out at the boundary between the Atlantic oceanic crust and the Galicia continental margin (western Spain). These peridotites, cored at Hole 637A (ODP Leg 103) have been mylonitized at high-temperature, low-pressure conditions and under large deviatoric stress during their uplift (Girardeau et al., 1988, doi:10.2973/odp.proc.sr.103.135.1988). After this main ductile deformation event, the peridotite underwent a polyphase metamorphic static episode in the presence of water, with the crystallization of Ti- and Cr-rich pargasites at high-temperature (800°-900°C) interaction with a metasomatic fluid or alkaline magma. Introduction of water produced destabilization of the pyroxenes and the subsequent development of hornblendes and tremolite at temperatures decreasing from 750° to 350°C. The main serpentinization of the peridotite occurred at a temperature below 300°C, and possibly around 50°C, as a consequence of the introduction of a large amount of seawater, which is suggested by stable isotope (d18O and SD) data. Finally, calcite derived from seawater precipitated in late-formed fractures or locally pervasively impregnated the peridotite at low temperature (~10°C).