964 resultados para semiconductor III-V material
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11–12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines of treatment in advanced disease, early-stage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on locally advanced disease.
Resumo:
Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.
Resumo:
Measurable electrical signal is generated when a gas flows over a variety of solids, including doped semiconductors, even at the modest speed of a few meters per second. The underlying mechanism is an interesting interplay of Bernoulli's principle and the Seebeck effect. The electrical signal depends on the square of Mach number (M) and is proportional to the Seebeck coefficient (S) of the solids. Here we present experimental estimate of the response time of the signal rise and fall process, i.e. how fast the semiconductor materials respond to a steady flow as soon as it is set on or off. A theoretical model is also presented to understand the process and the dependence of the response time on the nature and physical dimensions of the semiconductor material used and they are compared with the experimental observations. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: The national resuscitation guidelines were published in Finland in 2002 and are based on international guidelines published in 2000. The main goal of the national guidelines, available on the Internet free of charge, is early defibrillation by nurses in an institutional setting. Aim: To study possible changes in cardiopulmonary resuscitation (CPR) practices, especially concerning early defibrillation, nurses and students attitudes of guideline implementation and nurses and students ability to implement the guideline recommendations in clinical practices after publication of the Current Care (CC) guidelines for CPR 2002. Material and methods: CPR practices in Finnish health centres; especially concerning rapid defibrillation programmes, as well as the implementation of CC guidelines for CPR was studied in a mail survey to chief physicians of every health centre in Finland (Study I). The CPR skills using an automated external defibrillator (AED) were compared in a study including Objective stuctured clinical examination (OSCE) of resuscitation skills of nurses and nursing students in Finnish and Swedish hospital and institution (Studies II, III). Attitudes towards CPR-D and CPR guidelines among medical and nursing students and secondary hospital nurses were studied in surveys (Studies IV, V). The nurses receiving different CPR training were compared in a randomized trial including OSCE of CPR skills of nurses in Finnish Hospital (Study VI). Results: Two years after the publication, 40.7% of Finnish health centres used national resuscitation guidelines. The proportion of health centres having at least one AED (66%) and principle of nurse-performed defibrillation without the presence of a physician (42%) had increased. The CPR-D training was estimated to be insufficient regarding basic life support and advanced life support in the majority of health centres (Study I). CPR-D skills of nurses and nursing students in two specific Swedish and Finnish hospitals and institutions (Study II and III) were generally inadequate. The nurses performed better than the students and the Swedish nurses surpassed the Finnish ones. Geriatric nurses receiving traditional CPR-D training performed better than those receiving an Internet-based course but both groups failed to defibrillate within 60 s. Thus, the performance was not satisfactory even two weeks after traditional training (Study VI). Unlike the medical students, the nursing students did not feel competent to perform procedures recommended in the cardiopulmonary resuscitation guidelines including the defibrillation. However, the majority of nursing students felt confident about their ability to perform basic life support. The perceived ability to defibrillate correlated significantly with a positive attitude towards nurse-performed defibrillation and negatively with fear of damaging the patient s heart by defibrillation (Study IV). After the educational intervention, the nurses found their level of CPR-D capability more sufficient than before and felt more confident about their ability to perform defibrillation themselves. A negative attitude toward defibrillation correlated with perceived negative organisational attitudes toward cardiopulmonary resuscitation guidelines. After CPR-D education in the hospital, the majority (64%) of nurses hesitated to perform defibrillation because of anxiety and 27 % hesitated because of fear of injuring the patient. Also a negative personal attitude towards guidelines increased markedly after education (Study V). Conclusions: Although a significant change had occurred in resuscitation practices in primary health care after publication of national cardiopulmonary resuscitation guidelines the participants CPR-D skills were not adequate according to the CPR guidelines. The current way of teaching is unlikely to result in participants being able to perform adequate and rapid CPR-D. More information and more frequent training are needed to diminish anxiety concerning defibrillation. Negative beliefs and attitudes toward defibrillation affect the nursing students and nurses attitudes toward cardiopulmonary resuscitation guidelines. CPR-D education increased the participants self-confidence concerning CPR-D skills but it did not reduce their anxiety. AEDs have replaced the manual defibrillators in most institutions, but in spite of the modern devices the anxiety still exists. Basic education does not provide nursing students with adequate CPR-D skills. Thus, frequent training in the workplace has vital importance. This multi-professional program supported by the administration might provide better CPR-D skills. Distance learning alone cannot substitute for traditional small-group learning, tutored hands-on training is needed to learn practical CPR-D skills. Standardized testing would probably help controlling the quality of learning. Training of group-working skills might improve CPR performance.
Resumo:
Dinuclear ((VVV)-V-IV) oxophenoxovanadates of general formula [V2O3L] have been synthesized in excellent yields by reacting bis(acetylacetonato)oxovanadium(IV) with H3L in a 2:1 ratio in acetone under an N-2 atmosphere. Here L3- is the deprotonated form of 2,6-bis[{{(2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L1), 2,6-bis[{{(5-methyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L2) 2,6-bis[ {{(5-tert-butyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenoI (H3L3), 2,6-bis[{{(5-chloro-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L4) , 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L5), or 2,6-bis[{{(5-methoxy-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L6). In [V2O3L1], both the metal atoms have distorted octahedral geometry. The relative disposition of two terminal V=O groups in the complex is essentially cis. The O=V...V=O torsion angle is 24.6(2)degrees. The V-O-oxo-V and V-O-phenoxo-V angles are 117.5(4) and 93.4(3)degrees, respectively. The V...V bond distance is 3.173(5) Angstrom. X-ray crystallography, IR, UV-vis, and H-1 and V-51 NMR measurements show that the mixed-valence complexes contain two indistinguishable vanadium atoms (type 111). The thermal ellipsoids of O2, O4, C10, C14, and C15 also suggests a type III complex in the solid state. EPR spectra of solid complexes at 77 K display a single line indicating the localization of the odd electron (3d(xy)(1)). Valence localization at 77 K is also consistent with the V-51 hyperfine structure of the axial EPR spectra (3d(xy)(1) ground state) of the complexes in frozen (77 K) dichloromethane solution: S = 1/2, g(parallel to) similar to 1.94, g(perpendicular to) similar to 1.98, A(parallel to) similar to 166 x 10(-4) cm(-1), and A(perpendicular to) similar to 68 x 10(-4) cm(-1). In contrast isotropic room-temperature solution spectra of the family have 15 hyperfine lines (g(iso) similar to 1.974 and A(iso) similar to 50 x 10(-4) cm(-1)) revealing that the unpaired electron is delocalized between the metal centers. Crystal data for the [V2O3L1].CH2Cl2 complex are as follows: chemical formula, C32H43O6N4C12V2; crystal system, monoclinic; space group, C2/c; a = 18.461(4), b = 17.230(3), c = 13.700(3) Angstrom; beta = 117.88(3)degrees; Z = 8.
Resumo:
With a view to understanding the mechanism of the formation of 6-methoxy-2,2-(tetrachloro--phenylenedioxy)-naphthalen-1 (2H)-one (IIIa) in the reaction of 6-methoxy-1-tetralone (Ia) with tetrachloro-1,2-benzoquinone (II), the reaction of (II) with various tetralones and naphthols has been studied. Reaction with either α-tetralone or α-naphthol gives 2,2-(tetrachloro-o-phenylenedioxy)naphthalen-1 (2H)-one (IIIb), whereas reaction with either β-tetralone or β-naphthol gives a mixture of (IIIb) and ,1-(tetrachloro-o-phenylenedioxy)-naphthalen-2 (1H)-one (IX), with the former predominating. Further, reactions of (II) with 7-methoxy-3,4-dihydrophenanthren- 1 (2H)-one and m-methoxyphenol gave respectively 7-methoxy- ,2-(tetrachloro-o- phenylenedioxy)phenanthren-1 (2H)-one (VII) and 3-methoxy-6,6-(tetrachloro-o- phenylenedioxy)cyclohexa-2,4-dien-1-one (VIII). Structures of all these compounds have been proved on the basis of i.r. and n.m.r. data. The pathway to the formation of the condensates (III) is discussed.
Resumo:
Thin films are the basis of much of recent technological advance, ranging from coatings with mechanical or optical benefits to platforms for nanoscale electronics. In the latter, semiconductors have been the norm ever since silicon became the main construction material for a multitude of electronical components. The array of characteristics of silicon-based systems can be widened by manipulating the structure of the thin films at the nanoscale - for instance, by making them porous. The different characteristics of different films can then to some extent be combined by simple superposition. Thin films can be manufactured using many different methods. One emerging field is cluster beam deposition, where aggregates of hundreds or thousands of atoms are deposited one by one to form a layer, the characteristics of which depend on the parameters of deposition. One critical parameter is deposition energy, which dictates how porous, if at all, the layer becomes. Other parameters, such as sputtering rate and aggregation conditions, have an effect on the size and consistency of the individual clusters. Understanding nanoscale processes, which cannot be observed experimentally, is fundamental to optimizing experimental techniques and inventing new possibilities for advances at this scale. Atomistic computer simulations offer a window to the world of nanometers and nanoseconds in a way unparalleled by the most accurate of microscopes. Transmission electron microscope image simulations can then bridge this gap by providing a tangible link between the simulated and the experimental. In this thesis, the entire process of cluster beam deposition is explored using molecular dynamics and image simulations. The process begins with the formation of the clusters, which is investigated for Si/Ge in an Ar atmosphere. The structure of the clusters is optimized to bring it as close to the experimental ideal as possible. Then, clusters are deposited, one by one, onto a substrate, until a sufficiently thick layer has been produced. Finally, the concept is expanded by further deposition with different parameters, resulting in multiple superimposed layers of different porosities. This work demonstrates how the aggregation of clusters is not entirely understood within the scope of the approximations used in the simulations; yet, it is also shown how the continued deposition of clusters with a varying deposition energy can lead to a novel kind of nanostructured thin film: a multielemental porous multilayer. According to theory, these new structures have characteristics that can be tailored for a variety of applications, with precision heretofore unseen in conventional multilayer manufacture.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Direct writing of patterns is being widely attempted in the field of microelectronic circuit/device manufacture. Use of this technique eliminates the need for employing photolithographic process. Laser induced direct writing can be achieved by (i) Photochemical reaction [i] , (ii) Evaporation from target material [2], and (iii) decomposition.Micron size features of palladium and copper through decomposition of palladium acetate and copper formate respectively on quartz and silicon using Argon ion laser have been reported [3,4] .In this commuication we report a technique for both single line and large area depositon of copper through decomposition of copper acetate,(CH3COO)2Cu, on alumina substrates.Nd:YAG laser known for its reliability and low maintenance cost as compared to excimer and other gas lasers is used. This technique offers an attractive and economical alternative for manufacture of thin film microcircuits.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
The multifaceted passive present participle in Finnish This study investigates the uses of the passive present participle in Finnish. The participle occurs in a variety of syntactic environments and exhibits a rich polysemy. Former descriptions have treated it as a mainly modal element, but it has several non-modal uses as well. The present study provides an overview of its uses and meanings, with the main focus on the factors which trigger the modal reading. In addition, the study contains two case studies on modal periphrastic constructions consisting of the verb 'to be' and the present passive participle, the Obligation construction, e.g., on men-tä-vä [is go-pass-ptc], and the Possiblity construction, e.g., on pelaste-tta-v-i-ssa [is save-pass-ptc-pl-ine]. The study is based on empirical data of 9000 sentences obtained from i) large collections of transcribed material from Finnish dialects, ii) a corpus of modern Finnish newspaper texts, iii) corpora of Old Finnish texts. Both in colloquial and standard Finnish the reading of the participle is highly dependent of the context and determined by such factors as the overall syntactic environment and other co-occurring elements. One of the main findings here is that the Finnish passive present participle is not modal per se. The contextual modal reading arises whenever the state of affairs is conceptualized from the viewpoint of the implied subject of the participle, and the meaning of possibility or obligation depends mostly on whether the situation is pleasant or undesirable. In sections examining the grammaticalization of the Possibility and Obligation constructions, the perspective is diachronic. Both constructions have derived from copula constructions with the passive present participle as a predicate (adjective or adverb). These sections show how a linguistic change can be investigated on the basis of the patterns of usage in the empirical data. The Possibility construction is currently going through a restructuration to a passive verbal complex. The source of this construction is reflected in its present-day use by the fact that it heavily biased towards a small set of verbs. The Obligation construction has grammaticalized to a construction comparable to a compound tense. Patterns of use of the construction show that grammaticalization originates in specific syntactic constructions with an implication of practical necessity. Furthermore, it is shown that the Obligation construction has grammaticalized in different directions in standard and colloquial Finnish. Differing from the study on most typical phenomena investigated in the literature on grammaticalization of modality, the present study opens new perspectives and methods for discussion on these questions.
Resumo:
Among the various cathode materials studied for Li-ion batteries over the past many years, spinet LiMn2O4 is found to be one of the most attractive materials. Nanoparticles of the electrode materials sustain high rate capability due to large surface to volume ratio and small diffusion path length. Nanoparticles of spinel LiMn2O4 have been synthesized by microwave hydrothermal technique using prior synthesized amorphous MnO2 and LiOH. The phase and purity of spinel LiMn2O4 are confirmed by powder X-ray diffraction. The morphological studies have been investigated using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances of the material for Li insertion/extraction are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling and AC impedance studies. The initial discharge capacity is found to be about 89 mAh g(-1) at current density of 21 mA g(-1). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The imprint of the changing surface concentration of minority carriers in photocurrent transients is marginalized in “switch off” transients as compared to “switch on” transients. When the surface level is situated close to either one of the band edges, it is shown that in principle it must be possible to obtain the energy of the surface level from “switch off” transients.The time constants for the “switch on” and “switch off” cases behave differently with potential. While in “switch off”, transient plots, the magnitude of the slope decreases monotonically with increasing band bending potentials; for the “switch on” however, though it decreases and is identical to “switch off” initially, beyond a certain increase in potential the magnitude of the slope shows an increase.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.
Resumo:
The material presented in this paper summarizes the progress that has been made in the analysis, design, and testing of concrete structures. The material is summarized in the following documents: 1. Part I - Containment Design Criteria and Loading Combinations - J.D. Stevenson (Stevenson and Associates, Cleveland, Ohio, USA) 2. Part II - Reinforced and Prestressed Concrete Behavior - J. Eibl and M. Curbach (Karlsruhe University, Karlsruhe, Germany) 3. Part III - Concrete Containment Analysis, Design and Related Testing - T.E. Johnson and M.A. Daye (Bechtel Power Corporation, Gaithersburg, Maryland USA) 4. Part IV - Impact and Impulse Loading and Response Prediction - J.D. Riera (School of Engineering - UFRGS, Porto Alegre, RS, Brazil) 5. Part V - Metal Containments and Liner Plate Systems - N.J. Krutzik (Siemens AG, Offenbach Am Main, Germany) 6. Part VI - Prestressed Reactor Vessel Design, Testing and Analysis - J. Nemet (Austrian Research Center, Seibersdorf, Austria) and K.T.S. Iyengar (Indian Institute of Science, Bangalore, India).