997 resultados para pressure equipment
Resumo:
A laboratory investigation was undertaken to determine the limiting model Reynolds number above which the scour behavior of rock protected structures can be reproduced in hydraulic models scaled according to the Froude criterion. A submerged jet was passed over an initially full scour pocket containing uniform glass spheres and the rate of scour was measured as a function of time. The dimensions of the scour pocket and jet and the particle diameters were varied as needed to maintain strict geometric similarity. For each of two different Froude numbers the Reynolds number was varied over a wide range. The normalized scour rate was found to be practically independent of the Reynolds number, R, (based on the jet velocity and particle diameter) at values of R above about 2.5 x 10^3, and to decrease with Rat smaller values. A grid placed in the jet was found to have a very strong effect on the scour rate. In an attempt to explain the effect of R on the scour behavior, turbulent pressure and velocity fluctuations were measured in air flows and water flows, respectively, over rigid scour pockets having the same geometry as those formed in the scour experiments. The normalized spectra of the fluctuations were found to be nearly independent of R, but the flow pattern was found to be very sensitive to the inlet condition, the jet deflecting upward or downward in a not wholly explainable manner. This indicates that scour behavior can be modeled only if the approach flow is also accurately modeled.
Resumo:
The effects of combined pressure/temperature treatments (200, 400 and 600 MPa, at 20 and 40 °C) on the physical and nutritional properties of swede roots (Brassica napus var. napobrassica) were assessed. Changes induced by high pressure processing (HPP) on the original properties of swede samples were compared with those produced by thermal treatment (blanching). All studied treatments altered the physical properties of swede, resulting in a loss of hardness and water binding capacity. The strongest alteration of texture was observed after HPP at 400 MPa, while 600 MPa was the treatment that better preserved the texture properties of swede. Blanching caused less total colour changes (ΔE) than HPP. Antioxidant properties of swede were measured as total antioxidant capacity, ascorbic acid and total phenol content. All treatments caused a loss of antioxidant capacity, which was less pronounced after HPP at 600 MPa and 20 °C and blanching. Four glucosinolates were detected in swede roots, glucoraphanin, progoitrin, glucobrassicanapin and glucobrassicin. Glucobrassicanapin and glucobrassicin contents were reduced with all studied treatments. Progoitrin content was not affected by blanching and HPP at 200 MPa. HPP at higher pressure levels (400 and 600 MPa), though, induced an increase of progoitrin levels. The results indicated that blanching and HPP at 600 MPa and 20 °C were the treatments that better preserved the original quality properties of swede.
Resumo:
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
A study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the following for each technique: a summary of published research, detailed documentation of the design and performance of the 36 projects, conclusions and recommendations of the state highway engineers panel, "Design and Construction Guidelines" and "Guide Specifications." The latter two products are prepared for use by state highway agencies. The results of this study are based upon a review of literature, extensive field surveys and analysis of 36 rehabilitation projects, and the experience of an expert panel of state highway engineers.
Resumo:
Plastic air content is typically tested by the pressure method, ASTM C138. Loss of air content through the paver has been shown to exceed 2 percent at times. Research has shown that early deterioration of pavements in Iowa may be directly or indirectly related to low or inadequate air content. Hardened air content is typically checked using the linear traverse method, ASTM C457. The linear traverse method is very time consuming and could not be used on a production scale. A quick and effective method of testing in place air content is needed. Research has shown a high degree of correlation with the high-pressure method of determining air content of hardened concrete versus plastic air content in laboratory conditions. This research indicated that air contents are more variable when comparing core results to plastic air content, although the overall average for the air content was comparable. Perhaps, the location of the plastic air content test, obtained from construction records, versus location of the cores was not as accurate as needed.
Resumo:
The relationship between pressure induced changes on individual proteins and selected quality parameters in bovine longissimus thoracis et lumborum (LTL) muscle was studied. Pressures ranging from 200 to 600 MPa at 20 °C were used. High pressure processing (HPP) at pressures above 200 MPa induced strong modifications of protein solubility, meat colour and water holding capacity (WHC). The protein profiles of non-treated and pressure treated meat were observed using two dimensional electrophoresis. Proteins showing significant differences in abundance among treatments were identified by mass spectrometry. Pressure levels above 200 MPa strongly modified bovine LTL proteome with main effects being insolubilisation of sarcoplasmic proteins and solubilisation of myofibrillar proteins. Sarcoplasmic proteins were more susceptible to HPP effects than myofibrillar. Individual protein changes were significantly correlated with protein solubility, L*, b* and WHC, providing further insights into the mechanistic processes underlying HPP influence on quality and providing the basis for the future development of protein markers to assess the quality of processed meats.
Resumo:
Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.
Resumo:
Cities and counties in Iowa have more than 8,890 steel bridges, most of which are painted with red lead paint. The Iowa Department of Transportation (Iowa DOT) maintains less than 35 bridges coated with red lead paint, including seven of the large border bridges over the Mississippi and Missouri Rivers. Because of the federal and state regulations for bridge painting, many governmental agencies have opted not to repaint, or otherwise maintain, lead paint coatings. Consequently, the paint condition on many of these bridges is poor, and some bridges are experiencing severe rusting of structural members. This research project was developed with two objectives: 1) to evaluate the effectiveness of preparing the structural steel surface of a bridge with high pressure water jetting instead of abrasive blasting and 2) to coat the structural steel surface with a moisture-cured polyurethane paint under different surface preparation conditions.
Resumo:
The issue of corrosion of winter maintenance equipment is becoming of greater concern because of the increased use of liquid solutions of ice control chemicals, as opposed to their application in solid form. Being in liquid form, the ice control chemicals can more easily penetrate into the nooks and crannies on equipment and avoid being cleansed from the vehicle. Given this enhanced corrosive ability, methods must be found to minimize corrosion. The methods may include coatings, additives, cleansing techniques, other methods, and may also include doing nothing, and accepting a reduced equipment lifetime as a valid (perhaps) trade off with the enhanced benefits of using liquid ice control chemicals. In reality, some combination of these methods may prove to be optimal. Whatever solutions are selected, they must be relatively cheap and durable. The latter point is critical because of the environment in which maintenance trucks operate, in which scrapes, scratches and dents are facts of life. Protection methods that are not robust simply will not work. The purpose of this study is to determine how corrosion occurs on maintenance trucks, to find methods that would minimize the major corrosion mechanisms, and to
Resumo:
Cardiovascular diseases are the principal cause of death in women in developed countries and are importantly promoted by hypertension. The salt sensitivity of blood pressure (BP) is considered as an important cardiovascular risk factor at any BP level. Preeclampsia is a hypertensive disorder of pregnancy that arises as a risk factor for cardiovascular diseases. This study measured the salt sensitivity of BP in women with a severe preeclampsia compared with women with no pregnancy hypertensive complications. Forty premenopausal women were recruited 10 years after delivery in a case-control study. Salt sensitivity was defined as an increase of >4 mm Hg in 24-hour ambulatory BP on a high-sodium diet. The ambulatory BP response to salt was significantly increased in women with a history of preeclampsia compared with that of controls. The mean (95% confidence interval) daytime systolic/diastolic BP increased significantly from 115 (109-118)/79 (76-82) mm Hg on low-salt diet to 123 (116-130)/80 (76-84) on a high-salt diet in women with preeclampsia, but not in the control group (from 111 [104-119]/77 [72-82] to 111 [106-116]/75 [72-79], respectively, P<0.05). The sodium sensitivity index (SSI=Δmean arterial pressure/Δurinary Na excretion×1000) was 51.2 (19.1-66.2) in women with preeclampsia and 6.6 (5.8-18.1) mm Hg/mol per day in controls (P=0.015). The nocturnal dip was blunted on a high-salt diet in women with preeclampsia. Our study shows that women who have developed preeclampsia are salt sensitive before their menopause, a finding that may contribute to their increased cardiovascular risk. Women with a history of severe preeclampsia should be targeted at an early stage for preventive measures of cardiovascular diseases.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
Fibrin glue products and collagen patches are frequently used as a sealing product, preventing surgical side bleedings. This is especially true in the field of cardiovascular surgery, where increasing numbers of patients are being operated with antiplatelet and anticoagulation therapy. The aim of this report was, in an in vitro hemodynamic setting, to examine the sealant properties of the TachoSil (Nycomed Pharma, Linz, Austria) patch. Burst pressure and normal force of 15 TachoSil sealed defects were measured. This was determined in a closed hydraulic system. Mean burst pressure load for a 5-mm defect was 69+/-11.4 mmHg; for a 7-mm defect was 63+/-16 mmHg; and, 62+/-16 mmHg for the defect with a diameter of 10 mm (P>0.05). The mean calculated normal force was as follows: 0.91+/-0.15 N for the 5 mm defect, 6.5+/-1.6 N for the 7 mm, and 8.1+/-0.75 N for the 10 mm defect. The TachoSil patch has the capability to seal small defects. However, at the larger defects the seal character was significantly reduced. These results suggest that the device may be a good alternative for hemostasis for small defects. The capacity to curtail or stop hemorrhage at the larger defects is unlikely.