904 resultados para nano-grains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication and field emission properties of high-density nano-emitter arrays with on-chip electron extraction gate electrodes and up to 106 metallic nanotips that have an apex curvature radius of a few nanometers and a the tip density exceeding 108 cm−2. The gate electrode was fabricated on top of the nano-emitter arrays using a self-aligned polymer mask method. By applying a hot-press step for the polymer planarization, gate–nanotip alignment precision below 10 nm was achieved. Fabricated devices exhibited stable field electron emission with a current density of 0.1 A cm−2, indicating that these are promising for applications that require a miniature high-brightness electron source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grand Canonical Monte Carlo simulations are used to reproduce the N₂/CO ratio ranging between 1.7 x 10⁻³ and 1.6 x 10⁻² observed in situ in the Jupiter-family comet 67 P/Churyumov-Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N₂ in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ~ 31.8 and 69.9 K in the PSN to match the N₂/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N₂ depletion (factor of up to ~ 87 compared to the protosolar value) measured in 67 P/Churyumov-Gerasimenko.