993 resultados para mechanical resonance
Resumo:
A moving magnet linear motor compressor or pressure wave generator (PWG) of 2 cc swept volume with dual opposed piston configuration has been developed to operate miniature pulse tube coolers. Prelimnary experiments yielded only a no-load cold end temperature of 180 K. Auxiliary tests and the interpretation of detailed modeling of a PWG suggest that much of the PV power has been lost in the form of blow-by at piston seals due to large and non-optimum clearance seal gap between piston and cylinder. The results of experimental parameters simulated using Sage provide the optimum seal gap value for maximizing the delivered PV power.
Resumo:
This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761944]
Resumo:
The nucleation and growth of vanadium oxide nanotubes (VOx-NT) have been followed by a combination of numerous ex situ techniques. long the hydrothermal process. Intermediate solid phases extracted at different reaction times have been characterized by powder X-ray diffraction, scanning and transmission electron microscopy, electron spin resonance, and V-K edge :X-ray absorption near-edge structure spectroscopy. The supernatant vanadate solutions extracted during the hydrothermal treatment have been studied by liquid V-51 NMR and flame. spectroscopy. For short durations of the hydrothermal synthesis, the initial V2O5-surfactant intercalate. is progressively transformed into VOx-NT whose crystallization starts to be detected after a hydrothermal treatment of 24 h. Upon heating from 24 h to 7 days, VOx-NT are obtained in larger amount and with an improved crystallinity. The detection of soluble amines and cyclic metavanadate V4O12](4-) in the supernatant solution along the hydrothermal process suggests that VOx-NT result from a dissolution precipitation mechanism. Metavanadate species V4O12](4-) could behave as molecular precursors in the polymerization reactions leading to VOx-NT.
Resumo:
We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.
Resumo:
Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0 <= x <= 9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2 <= x <= 6. It is also seen that the addition of up to 2 at% Si increases the density rho of the glass considerably; however, further additions of Si lead to a near linear reduction in rho, in the range 2 <= x <= 6. Beyond x=6, rho increases again with Si content. The variation of molar volume V-m brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2 <= x <= 6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we report a significant improvement in mechanical and oxidation properties of near eutectic Nb-Si alloys by the addition of aluminum (Al) and control of microstructural length scale. A comparative study of two alloys Nb-18.79at%Si and Nb-12.3at%Si-9at%Al were carried out. The processing for microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mould. It is shown that addition of Al suppresses Nb3Si phase and promotes beta Nb5Si3 phase under nonequilibrium solidification condition. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloy. A detailed TEM study shows the presence of delta-Nb11Si4 phase in Nb matrix. The hardness of Nb solid solution can be increased as a consequence to a level observed in Nb3Si intermetallic due to the well oriented precipitates. Compression test yields the ultimate strength of 1.8 +/- 0.1 GPa and engineering strain of 2.3 +/- 0.03%. In comparison, the binary Nb-18.79 at% Si alloy possesses an ultimate strength of 1.35 +/- 0.1 GPa and strain of 0.2 +/- 0.01% when processed under identical conditions. The latter exhibits coarser microstructural length scale (300-400 nm) and a brittle behavior. The indentation fracture toughness of Al containing suction cast alloy shows a value of 20.2 +/- 0.5 MPa root m which represents a major improvement over bulk Nb-Si eutectic alloy. The detailed thermal studies confirm a multifold improvement in oxidation resistance up to 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.
Resumo:
The paper reports the effect of addition of small amount of Mg on the mechanical and oxidation properties of Nb-Nb3Si eutectic composites in Nb-Si system under the condition of suction casting. Mg addition increases the volume fraction of primary dendrites of Nb solid solution. This phase contains significant amount of strengthening precipitates. Two different precipitates are identified. The large plate shaped precipitates are that of hcp phase, while fine coherent precipitates have the structure similar to recently identified delta-Nb11Si2 phase. The Mg addition improves both the strength and ductility of the composite at room temperature (similar to 1.4 GPa and similar to 5% engineering strain) as well as at 700 degrees C(similar to 1.2 GPa and similar to 7% engineering strain). The presence of Mg results in a complex barrier layer which significantly increases the oxidation resistance up to a temperature of at least 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Chromium nitride (CrN) thin films were deposited at room temperature on silicon and glass substrates using DC reactive magnetron sputtering in Ar + N-2 plasma. Structure and mechanical properties of these films were examined by using XRD, FESEM and nanoindentation techniques. XRD studies revealed that films are of mixed phase at lower nitrogen partial pressure (P-N2) and single phase at higher (P-N2). Microscopy results show that the films were composed of non-equiaxed columns with nanocrystallite morphology. The hardness and elastic modulus of the films increase with increasing nitrogen partial pressure (P-N2). A maximum hardness of similar to 29 GPa and elastic modulus of 341 GPa were obtained, which make these films useful for several potential applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Substitution plays an important role in determining the triplet state reactivity. In this paper, we have studied the effect of chlorine substitution on the triplet state structure and the reactivity of thioxanthone (TX). We have employed time-resolved resonance Raman technique to understand the structure of the lowest triplet excited state of 2-chlorothioxanthone (CTX). The experimental findings have been corroborated with the computational results using density functional theory. Akin to the parent compound (TX), coexistence of two lowest triplet states has been observed in case of CTX, which has been substantiated using resonant probe wavelength dependence study. The relative contribution of 3n-pi* to 3 pi-pi* to the equilibrated triplet state has been found to be more for CTX compared to TX suggesting increase in the triplet state reactivity after the substitution. The above observation has been further supported by the flash photolysis experiments. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.
Resumo:
The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.
Resumo:
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. In our research, ten experimental studies are conducted to find out how designers synthesize solution concepts for multi-state mechanical devices. The designers are asked to think aloud, while carrying out the synthesis. These design synthesis processes are video recorded. It has been found that modification of kinematic pairs and mechanisms is the major activity carried out by all the designers. This paper presents an analysis of these synthesis processes using configuration space and topology graph to identify and classify the types of modifications that take place. Understanding of these modification processes and the context in which they happened is crucial to develop a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives.
Resumo:
In the present study, WC-12Co coatings were deposited by detonation-spraying technique using conventional and nanostructured WC-12Co feedstock at four different oxy/fuel ratios (OF ratio). The coatings exhibited the presence of phases like W2C and W due to the decarburization of the WC phase, and the proportions of these phases were higher in the nano WC-12Co coatings compared with conventional WC-12Co coatings. Coating hardness and fracture toughness were measured. The tribological performance of coatings was examined under dry sand rubber wheel abrasion wear, and solid particle erosion wear conditions. The mechanical and wear properties of coatings were influenced by degree of decarburization and more so in the case of nanostructured WC-Co coatings. The results indicate that the extent of decarburization has a substantial influence on the elastic modulus of the coating which in turn is related to the extent of intersplat cracking of the coating.
Resumo:
The key problem tackled in this paper is the development of a stand-alone self-powered sensor to directly sense the spectrum of mechanical vibrations. Such a sensor could be deployed in wide area sensor networks to monitor structural vibrations of large machines (e. g. aircrafts) and initiate corrective action if the structure approaches resonance. In this paper, we study the feasibility of using stretched membranes of polymer piezoelectric polyvinlidene fluoride for low-frequency vibration spectrum sensing. We design and evaluate a low-frequency vibration spectrum sensor that accepts an incoming vibration and directly provides the spectrum of the vibration as the output.