772 resultados para fatigue class
Resumo:
We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.
Resumo:
In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.
Resumo:
In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.
Resumo:
Two-photon absorption spectra of a triarylamine compounds dissolved in toluene were measured using the well-known Z-scan technique, employing 120-fs laser pulse-width. According to the results, an extra band located at around 900 nm was observed only for triarylamine with azoaromatic units. On the other hand, a shift in the two-photon absorption band for triarylamine, with and without azoaromatic units, is observed when different electron donor/acceptors groups are changed. The fitting of the spectra, using sum-over-states model, allowed us to obtain the spectroscopic parameters of each molecule, which appears to be in reasonable agreement with molecules presenting similar structural moieties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.
Resumo:
In this work we study the spectrum of the lowest screening masses for Yang-Mills theories on the lattice. We used the SU(2) gauge group in (3 + 1) dmensions. We adopted the multiple exponential method and the so-called ""variational"" method, in order to detect possible excited states. The calculations were done near the critical temperature of the confinement-deconfinement phase transition. We obtained values for the ratios of the screening masses consistent with predictions from universality arguments. A Monte Carlo evolution of the screening masses in the gauge theory confirms the validity of the predictions.
Resumo:
In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
In general, the normal distribution is assumed for the surrogate of the true covariates in the classical error model. This paper considers a class of distributions, which includes the normal one, for the variables subject to error. An estimation approach yielding consistent estimators is developed and simulation studies reported.
Resumo:
The two-parameter Birnbaum-Saunders distribution has been used successfully to model fatigue failure times. Although censoring is typical in reliability and survival studies, little work has been published on the analysis of censored data for this distribution. In this paper, we address the issue of performing testing inference on the two parameters of the Birnbaum-Saunders distribution under type-II right censored samples. The likelihood ratio statistic and a recently proposed statistic, the gradient statistic, provide a convenient framework for statistical inference in such a case, since they do not require to obtain, estimate or invert an information matrix, which is an advantage in problems involving censored data. An extensive Monte Carlo simulation study is carried out in order to investigate and compare the finite sample performance of the likelihood ratio and the gradient tests. Our numerical results show evidence that the gradient test should be preferred. Further, we also consider the generalized Birnbaum-Saunders distribution under type-II right censored samples and present some Monte Carlo simulations for testing the parameters in this class of models using the likelihood ratio and gradient tests. Three empirical applications are presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.
Resumo:
This paper generalizes the methodology of Cat and Brown [Cai, T., Brown, L.D., 1998. Wavelet shrinkage for nonequispaced samples. The Annals of Statistics 26, 1783-1799] for wavelet shrinkage for nonequispaced samples, but in the presence of correlated stationary Gaussian errors. If the true function is a member of a piecewise Holder class, it is shown that, even for long memory errors, the rate of convergence of the procedure is almost-minimax relative to the independent and identically distributed errors case. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the celebrated example of Y. Kannai of a linear partial differential operator which is hypoelliptic but not locally solvable, we consider it class of evolution operators with real-analytic coefficients and study their local solvability both in L(2) and in the weak sense. In order to do so we are led to propose a generalization of the Nirenberg-Treves condition (psi) which is suitable to our study. (C) 2009 Published by Elsevier Inc.
Resumo:
In this article we prove that, if (U, ) is a finite dimensional baric algebra of (gamma, delta) type over a field F of characteristic not equal 2,3,5 such that gamma(2) - delta(2) + delta = 1 and 0,1, then rad(U) = R(U)boolean AND(bar(U))(2), where R(U) is the nilradical (maximal nil ideal) of U.