939 resultados para curve
Resumo:
The Ramberg-Osgood relation which adequately describes the stress-strain curve of a strain-hardening material is extended to formulate the constitutive laws for creep. The constitutive laws which describe primary creep adequately are extended to secondary creep. The results are verified for the case of R.R. 59 at 200°C, Nimonic 80A and Nimonic 90 alloys at 750°C.
Resumo:
Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.
Resumo:
The spectra of glycine, its addition compounds and other amino-acids exhibit Raman lines in the region from 3250 cm.−1 to 2500 cm.−1 It has been shown that these lines cannot be assigned to N-H...O stretching vibrations, where the N atom has the covalency of three, but to N+-H...O stretching vibration where the N atom has the covalency of four. Using the data obtained with triglycine sulphate which has the largest number of N+-H...O bonds and whose H bond lengths are known, the correlation curve giving the relation between the N+-H...O stretching frequencies and the corresponding H bond lengths has been drawn. Using this correlation curve, the N+-H...O stretching frequencies appearing inα-glycine,γ-glycine, diglycine hydrochloride, diglycine hydrobromide,l-asparagine monohydrate anddl-alanine have been satisfactorily accounted for on the basis of the known hydrogen bond lengths in these substances.
Resumo:
Raman spectra of single crystals of adipic and sebacic acids have been photographed for the first time using λ 2537 excitation. The spectra have been divided into four regions: (a) internal frequencies; (b) summations and overtones; (c) external vibrations; and (d) low-frequency hydrogen bond oscillations. Tentative correlations have been given for all the internal frequencies and summations and overtones. A series of diffuse weak bands observed in the spectra of both these acids in the not, vert, similar2400–2800 cm−1 have been explained as a superposition of O---H frequencies lowered due to hydrogen bond formation over the summations and overtones of fundamentals mainly in the not, vert, similar1000–1500 cm−1 region. Rotatory type of external oscillations of the two formula units of these molecules in their unit cells have been identified at 76, 99, 118 and 165 cm−1 in adipic acid and 66, 95, 117 and 177 cm−1 in the spectrum of sebacic acid. A brief discussion of the low frequency hydrogen bond vibrations in these acids has been made. Making use of the Lippincott—Schroeder potential and assuming a highly anharmonic potential curve for the hydrogen bond, the vibrational frequencies of the bond have been theoretically evaluated. There is very good agreement between these and the experimental values. The results for adipic acid in cm−1 are: 304 (0 → 1), 270 (1 → 2), 241 (2 → 3), 222 (3 → 4) 201 (4 → 5), 183 (5 → 6). In the case of sebacic acid some of the intermediate and higher transitions are absent in the spectrum recorded by the author. From the above data for adipic acid the dissociation energy of the hydrogen bond was evaluated as 5·9 kcal/mole in fair agreement with the values derived from conventional methods.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
We report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.
Resumo:
By employing Carstensen's phase-comparison pulse method for measuring ultrasonic velocity-differences, the compressibility of sulphuric acid has been studied anew, the special interest being in the low concentration region. Sulphuric acid is found to show at first a decrease in velocity with increasing concentration and then an increase. The curve representing the apparent molal compressibility Φ(κ̄2) against the square root of the molar concentration c, shows a maximum and a minimum. This anomalous behaviour is interesting in view of the extreme anomalies in other colligative properties of sulphuric acid. A qualitative explanation of the observed maximum and minimum has been suggested.
Resumo:
An analysis of eccentrically loaded short reinforced concrete columns using a variable failure strain criterion is presented. The method dispenses with the usual procedure of assuming a fixed value for the ultimate strain in concrete. The analysis is based on the use of a simple, single equation for the complete stress-strain curve of concrete and the adoption of a process of maximisation of moment with respect to extreme fibre concrete compressive strain. Columns of rectangular section and loaded eccentrically along one axis only are considered in this paper. A good agreement is observed between the theoretical and experimental values of some test results.
Resumo:
The mechanism of sub-microscopic precipitation in an Al-Zn-Mg alloy selected for its maximum response to ageing has been studied by a standardized oxide-replica technique in a 100 kV. Philips Electron Microscope. Contrary to earlier conclusions, examination of the oxide replicas has been shown to reveal details of the precipitation process almost as clearly as the thin-foil transmission technique. The reported formation of spherical Guinier-Preston zones followed by the development of a Widmanstaetten pattern of precipitated platelets has been confirmed. The zones have, however, been shown to grow into the platelets and not to dissolve in the matrix as reported earlier. The precipitation process has been correlated with the Hardness/Ageing Time curve and the structure of the precipitates has also been discussed.
Resumo:
Matthias, Miller and Remeika1 were the first to observe that triglycine sulphate becomes ferroelectric below 47°C. The dielectric properties and the specific heat of this crystal have been studied through the transition temperature by Hoshino, Mitsui, Jona and Pepinsky2. The observed variation of the dielectric properties as a function of temperature in this crystal shows that the transition is of second order. Hoshino et al. concluded that the anomaly is not of the λ-type, since their specific heat - temperature curve showed only a hump. It was decided to investigate the thermal expansion of this crystal as it might throw some light on the nature of the transition.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.
Resumo:
Compression of a rough turned cylinder between two hard, smooth, flat plates has been analysed with the aid of a mathematical model based on statistical analysis. It is assumed that the asperity peak heights follow Gaussian or normal and beta distribution functions and that the loaded asperities comply as though they are completely isolated from the neighbouring ones. Equations have been developed for the loadcompliance relation of the real surface using a simplified relation of the form W0 = K1δn for the load-compliance of a single asperity. Parameters K1 and n have considerable influence on the load-compliance curve and they depend on the material, tip angle of the asperity, standard deviation of the asperity peak height distribution and the density of the asperities.
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.