768 resultados para Streaming video--Taxation
Resumo:
Real-time monitoring of multimedia Quality of Experience is a critical task for the providers of multimedia delivery services: from television broadcasters to IP content delivery networks or IPTV. For such scenarios, meaningful metrics are required which can generate useful information to the service providers that overcome the limitations of pure Quality of Service monitoring probes. However, most of objective multimedia quality estimators, aimed at modeling the Mean Opinion Score, are difficult to apply to massive quality monitoring. Thus we propose a lightweight and scalable monitoring architecture called Qualitative Experience Monitoring (QuEM), based on detecting identifiable impairment events such as the ones reported by the customers of those services. We also carried out a subjective assessment test to validate the approach and calibrate the metrics. Preliminary results of this test set support our approach.
Resumo:
We present a novel framework for encoding latency analysis of arbitrary multiview video coding prediction structures. This framework avoids the need to consider an specific encoder architecture for encoding latency analysis by assuming an unlimited processing capacity on the multiview encoder. Under this assumption, only the influence of the prediction structure and the processing times have to be considered, and the encoding latency is solved systematically by means of a graph model. The results obtained with this model are valid for a multiview encoder with sufficient processing capacity and serve as a lower bound otherwise. Furthermore, with the objective of low latency encoder design with low penalty on rate-distortion performance, the graph model allows us to identify the prediction relationships that add higher encoding latency to the encoder. Experimental results for JMVM prediction structures illustrate how low latency prediction structures with a low rate-distortion penalty can be derived in a systematic manner using the new model.
Resumo:
The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.
Resumo:
Se muestra la necesidad de la creación de un estándar que facilite el intercambio de datos entre empresas productoras de vídeo y cadenas de distribución. Se muestra un posible modelo en la forma de transmisión, modelo de datos y procesado de datos.
Resumo:
A highly parallel and scalable Deblocking Filter (DF) hardware architecture for H.264/AVC and SVC video codecs is presented in this paper. The proposed architecture mainly consists on a coarse grain systolic array obtained by replicating a unique and homogeneous Functional Unit (FU), in which a whole Deblocking-Filter unit is implemented. The proposal is also based on a novel macroblock-level parallelization strategy of the filtering algorithm which improves the final performance by exploiting specific data dependences. This way communication overhead is reduced and a more intensive parallelism in comparison with the existing state-of-the-art solutions is obtained. Furthermore, the architecture is completely flexible, since the level of parallelism can be changed, according to the application requirements. The design has been implemented in a Virtex-5 FPGA, and it allows filtering 4CIF (704 × 576 pixels @30 fps) video sequences in real-time at frequencies lower than 10.16 Mhz.
Resumo:
Automatic analysis of minimally invasive surgical (MIS) video has the potential to drive new solutions that alleviate existing needs for safer surgeries: reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. As an unobtrusive, always available source of information in the operating room (OR), this research proposes the use of surgical video for extracting useful information during surgical operations. Methodology proposed includes tools' tracking algorithm and 3D reconstruction of the surgical field. The motivation for these solutions is the augmentation of the laparoscopic view in order to provide orientation aids, optimal surgical path visualization, or preoperative virtual models overlay
Resumo:
Systems relying on fixed hardware components with a static level of parallelism can suffer from an underuse of logical resources, since they have to be designed for the worst-case scenario. This problem is especially important in video applications due to the emergence of new flexible standards, like Scalable Video Coding (SVC), which offer several levels of scalability. In this paper, Dynamic and Partial Reconfiguration (DPR) of modern FPGAs is used to achieve run-time variable parallelism, by using scalable architectures where the size can be adapted at run-time. Based on this proposal, a scalable Deblocking Filter core (DF), compliant with the H.264/AVC and SVC standards has been designed. This scalable DF allows run-time addition or removal of computational units working in parallel. Scalability is offered together with a scalable parallelization strategy at the macroblock (MB) level, such that when the size of the architecture changes, MB filtering order is modified accordingly
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead
Resumo:
We analyze the effect of packet losses in video sequences and propose a lightweight Unequal Error Protection strategy which, by choosing which packet is discarded, reduces strongly the Mean Square Error of the received sequence
Resumo:
Multimedia distribution through wireless networks in the home environment presents a number of advantages which have fueled the interest of industry in recent years, such as simple connectivity and data delivery to a variety of devices. Together with High-Definition (HD) contents, multimedia wireless networks have been proposed for several applications, such as IPTV and Digital TV distribution for multiple devices in the home environment. For these scenarios, we propose a multicast distribution system for High-Definition video over 802.11 wireless networks based on rate-limited packet retransmission. We develop a limited rate ARQ system that retransmits packets according to the importance of their content (prioritization scheme) and according to their delay limitations (delay control). The performance of our proposed ARQ system is evaluated and compared with a similarly rate-limited ARQ algorithm. The results show a higher packet recovery rate and improvements in video quality for our proposed system.
Resumo:
This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird’s-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight
Resumo:
INTRODUCTION: The EVA (Endoscopic Video Analysis) tracking system a new tracking system for extracting motions of laparoscopic instruments based on non-obtrusive video tracking was developed. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. METHODS: EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical centre to track the 3D position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. RESULTS: Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics such as path length (p=0,97), average speed (p=0,94) or economy of volume (p=0,85), proving the viability of EVA. CONCLUSIONS: EVA has been successfully used in the training setup showing potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and in image guided surgery.
Resumo:
Many applications in several domains such as telecommunications, network security, large scale sensor networks, require online processing of continuous data lows. They produce very high loads that requires aggregating the processing capacity of many nodes. Current Stream Processing Engines do not scale with the input load due to single-node bottlenecks. Additionally, they are based on static con?gurations that lead to either under or over-provisioning. In this paper, we present StreamCloud, a scalable and elastic stream processing engine for processing large data stream volumes. StreamCloud uses a novel parallelization technique that splits queries into subqueries that are allocated to independent sets of nodes in a way that minimizes the distribution overhead. Its elastic protocols exhibit low intrusiveness, enabling effective adjustment of resources to the incoming load. Elasticity is combined with dynamic load balancing to minimize the computational resources used. The paper presents the system design, implementation and a thorough evaluation of the scalability and elasticity of the fully implemented system.
Resumo:
P2P applications are increasingly present on the web. We have identified a gap in current proposals when it comes to the use of traditional P2P overlays for real-time multimedia streaming. We analyze the possibilities and challenges to extend WebRTC in order to implement JavaScript APIs for P2P streaming algorithms.