999 resultados para Quantum spin Hall
Resumo:
In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.
Resumo:
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
Dans le cadre de la politique multiculturelle de protection des minorités menée par le gouvernement taïwanais, le Comité ministériel aux affaires hakka (keweihui) a planifié dix-huit « halls culturels hakkas » dans chaque comté et municipalité. L'article retrace le processus de création d'un de ces halls, dans le nord de l'île de Taiwan, au cours de la décennie 2000. L'aménagement du hall procède à l'incorporation d'artistes locaux dans une tradition nationale hakka réinventée. Il est montré comment sa genèse s'est produite à l'intersection d'une politique impulsée par « le haut » et d'un projet émanant d'acteurs locaux. L'article met en évidence comment les catégories yingti (hardware) et ruanti (software) président à sa fabrication et impliquent une opposition et une complémentarité entre « contenant » et « contenu », entre « État » et « société », qui agissent à toutes les étapes de sa mise en oeuvre.
Resumo:
Conventional coronary magnetic resonance angiography (MRA) techniques display the coronary blood-pool along with the surrounding structures, including the myocardium, the ventricular and atrial blood-pool, and the great vessels. This representation of the coronary lumen is not directly analogous to the information provided by x-ray coronary angiography, in which the coronary lumen displayed by iodinated contrast agent is seen. Analogous "luminographic" data may be obtained using MR arterial spin tagging (projection coronary MRA) techniques. Such an approach was implemented using a 2D selective "pencil" excitation for aortic spin tagging in concert with a 3D interleaved segmented spiral imaging sequence with free-breathing, and real-time navigator technology. This technique allows for selective 3D visualization of the coronary lumen blood-pool, while signal from the surrounding structures is suppressed.
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria delsConjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics espotencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funciódensitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps queles distribucions de probabilitat quàntiques
Resumo:
Es mostra que, gracies a una extensió en la definició dels Índexs Moleculars Topològics, s'arriba a la formulació d'índexs relacionats amb la teoria de la Semblança Molecular Quàntica. Es posa de manifest la connexió entre les dues metodologies: es revela que un marc de treball teòric sòlidament fonamentat sobre la teoria de la Mecànica Quàntica es pot connectar amb una de les tècniques més antigues relacionades amb els estudis de QSPR. Es mostren els resultats per a dos casos d'exemple d'aplicació d'ambdues metodologies
Resumo:
Semiconductor nanoparticles, such as quantum dots (QDs), were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe) QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells), giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM) is optimal for bioimaging, whereas a high concentration (200 μM CdTe) could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.
Resumo:
Due to SNR constraints, current "bright-blood" 3D coronary MRA approaches still suffer from limited spatial resolution when compared to conventional x-ray coronary angiography. Recent 2D fast spin-echo black-blood techniques maximize signal for coronary MRA at no loss in image spatial resolution. This suggests that the extension of black-blood coronary MRA with a 3D imaging technique would allow for a further signal increase, which may be traded for an improved spatial resolution. Therefore, a dual-inversion 3D fast spin-echo imaging sequence and real-time navigator technology were combined for high-resolution free-breathing black-blood coronary MRA. In-plane image resolution below 400 microm was obtained. Magn Reson Med 45:206-211, 2001.
Resumo:
Es descriu l'aproximació de Capes Atòmiques dins de la teoria de la Semblança Molecular Quàntica. Partint només de dades teòriques, s'ha trobat una relació entre estructura molecular i activitat biològica per a diversos conjunts de molècules. Es descriuen els aspectes teòrics de la Semblança Molecular Quàntica i alguns exemples d'aplicació
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.