857 resultados para Probiotics, Lactobacillus, Inflammatory Bowel Disease, Colon, Dextran Sulfate Sodium
Resumo:
[EN]Previous studies have reported an association between a more pro-inflammatory diet profile and various chronic metabolic diseases. The Dietary Inflammatory Index (DII) was used to assess the inflammatory potential of nutrients and foods in the context of a dietary pattern. We prospectively examined the association between the DII and the incidence of cardiovascular disease (CVD: myocardial infarction, stroke or cardiovascular death) in the PREDIMED (Prevención con Dieta Mediterránea) study including 7216 high-risk participants.
Resumo:
Background: Chronic obstructive pulmonary disease (COPD) is a main risk for morbidity, associated with alterations in systemic inflammation. Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease. However, increase of inflammatory cytokines adversely affects quality of life, alteration in ventilatory and skeletal muscles functions. Moreover, exercise training has many beneficial effects in correction of the adverse effects of COPD. Objective: This study aimed to compare the response of inflammatory cytokines of COPD to aerobic versus resisted exercises. Materials and methods: One hundred COPD diseased patients participated in this study and were randomly included in two groups; the first group received aerobic exercise, whereas the second group received resisted exercise training for 12 weeks. Results: The mean values of TNF-α, Il-2, IL-4, IL-6 and CRP were significantly decreased in both groups. Also; there was a significant difference between both groups at the end of the study with more reduction in patients who received aerobic exercise training. Conclusion: Aerobic exercise is more appropriate than resisted exercise training in modulating inflammatory cytokines level in patients with chronic obstructive pulmonary disease.
Resumo:
Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.
Resumo:
We study a reaction–diffusion mathematical model for the evolution of atherosclerosis as an inflammation process by combining analytical tools with computer-intensive numerical calculations. The computational work involved the calculation of more than sixty thousand solutions of the full reaction–diffusion system and lead to the complete characterisation of the ωω-limit for every initial condition. Qualitative properties of the solution are rigorously proved, some of them hinted at by the numerical study
Resumo:
Background: Preclinical studies have identified certain probiotics as psychobiotics a live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. An 8 week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). Results: There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.
Resumo:
Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague–Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.
Resumo:
Objective: The aim of this literature review is to identify the role of probiotics in the management of enteral tube feeding (ETF) diarrhoea in critically ill patients.---------- Background: Diarrhoea is a common gastrointestinal problem seen in ETF patients. The incidence of diarrhoea in tube fed patients varies from 2% to 68% across all patients. Despite extensive investigation, the pathogenesis surrounding ETF diarrhoea remains unclear. Evidence to support probiotics to manage ETF diarrhoea in critically ill patients remains sparse.---------- Method: Literature on ETF diarrhoea and probiotics in critically ill, adult patients was reviewed from 1980 to 2010. The Cochrane Library, Pubmed, Science Direct, Medline and the Cumulative Index of Nursing and Allied Health Literature (CINAHL) electronic databases were searched using specific inclusion/exclusion criteria. Key search terms used were: enteral nutrition, diarrhoea, critical illness, probiotics, probiotic species and randomised clinical control trial (RCT).---------- Results: Four RCT papers were identified with two reporting full studies, one reporting a pilot RCT and one conference abstract reporting an RCT pilot study. A trend towards a reduction in diarrhoea incidence was observed in the probiotic groups. However, mortality associated with probiotic use in some severely and critically ill patients must caution the clinician against its use.---------- Conclusion: Evidence to support probiotic use in the management of ETF diarrhoea in critically ill patients remains unclear. This paper argues that probiotics should not be administered to critically ill patients until further research has been conducted to examine the causal relationship between probiotics and mortality, irrespective of the patient's disease state or projected prophylactic benefit of probiotic administration.
Resumo:
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa of humans, causing infections that can lead to pelvic inflammatory disease, infertility, and blinding trachoma. C. pneumoniae is a respiratory pathogen that is the cause of 12–15% of community-acquired pneumonia. Both chlamydial species were believed to be restricted to the epithelia of the genital, ocular, and respiratory mucosa; however, increasing evidence suggests that both these pathogens can be isolated from peripheral blood of both healthy individuals and patients with inflammatory conditions such as coronary artery disease and asthma. Chlamydia can also be isolated from brain tissues of patients with degenerative neurological disorders such as Alzheimer’s disease and multiple sclerosis, and also from certain lymphomas. An increasing number of in vitro studies suggest that some chlamydial species can infect immune cells, at least at low levels. These infections may alter immune cell function in a way that promotes chlamydial persistence in the host and contributes to the progression of several chronic inflammatory diseases. In this paper, we review the evidence for the growth of Chlamydia in immune cells, particularly monocytes/macrophages and dendritic cells, and describe how infection may affect the function of these cells.
Resumo:
After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.
Resumo:
The cancer stem cell hypothesis states that tumours arise from cells with the ability to self-renew and differentiate into multiple cell types, and that these cells persist in tumors as a distinct population that can cause disease relapse and hence metastasis. The crux of this hypothesis is that these cells are the only cells capable of, by themselves, giving rise to new tumours. What proportion of a tumour consists of these stem cells, where are they localised, how are they regulated, and how can we identify them? The stromal cells embedded within the extracellular matrix (ECM) not only provide a scaffold but also produce ECM constituents for use by stem cells. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to this cell niche and interact with a large number of ligands including growth factors, their receptors, and ECM structural components. It is still unclear whether ECM degradation and subsequent metastasis is a result of proteases produced by the tumour cells themselves or by cells within the stromal compartment. The identification of the cellular origin of cancer stem cells along with microenvironmental changes involved in the initiation, progression and the malignant conversion of all cancers is critical to the development of targeted therapeutics. As ubiquitous members of the ECM microenvironment and hence the cancer cell niche, HSPGs are candidates for a central role in these processes.
Resumo:
Background Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies. Methodology/Principal Findings Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects. Conclusions These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular 'code' recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Resumo:
Recent studies have demonstrated that angiogenesis and suppressed cell- mediated immunity (CMI) play a central role in the pathogenesis of malignant disease facilitating tumour growth, invasion and metastasis. In the majority of tumours, the malignant process is preceded by a pathological condition or exposure to an irritant which itself is associated with the induction of angiogenesis and/or suppressed CMI. These include: cigarette smoking, chronic bronchitis and lung cancer; chronic oesophagitis and oesophageal cancer; chronic viral infections such as human papilloma virus and ano-genital cancers, chronic hepatitis B and C and hepatocellular carcinoma, and Epstein- Barr virus (EBV) and lymphomas; chronic inflammatory conditions such as Crohn's disease and ulcerative colitis and colorectal cancer; asbestos exposure and mesothelioma and excessive sunlight exposure/sunburn and malignant melanoma. Chronic exposure to growth factors (insulin-like growth factor-I in acromegaly), mutations in tumour suppressor genes (TP53 in Li Fraumeni syndrome) and long-term exposure to immunosuppressive agents (cyclosporin A) may also give rise to similar environments and are associated with the development of a range of solid tumours. The increased blood supply would facilitate the development and proliferation of an abnormal clone or clones of cells arising as the result of: (a) an inherited genetic abnormality; and/or (b) acquired somatic mutations, the latter due to local production and/or enhanced delivery of carcinogens and mutagenic growth factors. With progressive detrimental mutations and growth-induced tumour hypoxia, the transformed cell, to a lesser or greater extent, may amplify the angiogenic process and CMI suppression, thereby facilitating further tumour growth and metastasis. There is accumulating evidence that long-term treatment with cyclo-oxygenase inhibitors (aspirin and indomethacin), cytokines such as interferon-α, anti-oestrogens (tamoxifen and raloxifene) and captopril significantly reduces the incidence of solid tumours such as breast and colorectal cancer. These agents are anti-angiogenic and, in the case of aspirin, indomethacin and interferon-α have proven immunomodulatory effects. Collectively these observations indicate that angiogenesis and suppressed CMI play a central role in the development and progression of malignant disease. (C) 2000 Elsevier Science Ltd.