937 resultados para Poly(propylene) (PP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of articular cartilage typically involves the repair of cartilage-subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage-subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite-β-tricalcium phosphate (HA-TCP), poly lactic-glycolic acid (PLGA)-HA-TCP dual-layered composite scaffolds (PLGA/HA-TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After three months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration and histological responses. The results showed that the transplanted cartilage layer supported by HA-TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA-TCP scaffolds. Furthermore, HA-TCP supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan (GAG) contents than that supported by PLGA/HA-TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title compound, [C8H11LiO4(H2O)2]n the distorted tetrahadral LiO4 coordination sphere comprises two water molecules and two carboxyl O-donors from separate bridging cis-2-carboxycyclohexane-1-carboxylate monoanions [Li-O range, 1.887(4)-1.946(3)A], giving chain substructures which extend along (010). Water-water and water-carboxyl O-H...O hydrogen bonds stabilize these chain structures and provide inter-chain links, resulting in a two-dimensional layered structure extending across (011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of visual artifacts to represent a complex adaptive system (CAS). The integrated master schedule (IMS) is one of those visuals widely used in complex projects for scheduling, budgeting, and project management. In this paper, we discuss how the IMS outperforms the traditional timelines and acts as a ‘multi-level and poly-temporal boundary object’ that visually represents the CAS. We report the findings of a case study project on the way the IMS mapped interactions, interdependencies, constraints and fractal patterns in a complex project. Finally, we discuss how the IMS was utilised as a complex boundary object by eliciting commitment and development of shared mental models, and facilitating negotiation through the layers of multiple interpretations from stakeholders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV–Vis and Raman), we show how the polymer’s higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT p-p stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effect of well-defined poly(dimethylsiloxane)-poly(ethylene glycol) (PDMS-PEG) ABA linear block co-oligomers on the proliferation of human dermal fibroblasts. The co-oligomers assessed ranged in molecular weight (MW) from 1335 to 5208 Da and hydrophilic-lipophilic balance (HLB) from 5.9 to 16.6 by varying the number of both PDMS and PEG units. In general, it was found that co-oligomers of low MW or intermediate hydrophilicity significantly reduced fibroblast proliferation. A linear relationship between down-regulation of fibroblast proliferation, and the ratio HLB/MW was observed at concentrations of 0.1 and 1.0 wt % of the oligomers. This enabled the structures with highest efficiency to be determined. These results suggest the possible use of the PEG-PDMS-PEG block co-oligomers as an alternative to silicone gels for hypertrophic scar remediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tailor-made water-soluble macromolecules, including a glycopolymer, obtained by living/controlled RAFT-mediated polymerization are demonstrated to react in water with diene-functionalized poly(ethylene glycol)s without pre- or post-functionalization steps or the need for a catalyst at ambient temperature. As previously observed in organic solvents, hetero-Diels-Alder (HDA) conjugations reached quantitative conversion within minutes when cyclopentadienyl moieties were involved. However, while catalysts and elevated temperatures were previously necessary for open-chain diene conjugation, additive-free HDA cycloadditions occur in water within a few hours at ambient temperature. Experimental evidence for efficient conjugations is provided via unambiguous ESI-MS, UV/vis, NMR, and SEC data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite broad application, few silicone-based surfactants of known structure or, therefore, surfactancy have been prepared because of an absence of selective routes and instability of silicones to acid and base. Herein the synthesis of a library of explicit silicone-poly(ethylene glycol) (PEG) materials is reported. Pure silicone fragments were generated by the B(C(6)F(5))(3)-catalyzed condensation of alkoxysilanes and vinyl-functionalized hydrosilanes. The resulting pure products were coupled to thiol-terminated PEG materials using photogenerated radicals under anaerobic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title compound, [Mg(H2O)2(C8H6FO3)2]n(0.4H2O)n, slightly distorted octahedral MgO6 complex units have crystallographic inversion symmetry, the coordination polyhedron comprising two trans-related water molecules and four carboxyl O-atom donors, two of which are bridging. Within the two-dimensional complex polymer which is parallel to (100), the coordinating water molecules form intermolecular O---H...O hydrogen-bonds with carboxylate and phenoxy O-atom acceptors, as well as with the partial-occupancy solvent water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background We have previously demonstrated that human kidney proximal tubule epithelial cells (PTEC) are able to modulate autologous T and B lymphocyte responses. It is well established that dendritic cells (DC) are responsible for the initiation and direction of adaptive immune responses and that these cells occur in the renal interstitium in close apposition to PTEC under inflammatory disease settings. However, there is no information regarding the interaction of PTEC with DC in an autologous human context. Methods Human monocytes were differentiated into monocyte-derived DC (MoDC) in the absence or presence of primary autologous activated PTEC and matured with polyinosinic:polycytidylic acid [poly(I:C)], while purified, pre-formed myeloid blood DC (CD1c+ BDC) were cultured with autologous activated PTEC in the absence or presence of poly(I:C) stimulation. DC responses were monitored by surface antigen expression, cytokine secretion, antigen uptake capacity and allogeneic T-cell-stimulatory ability. Results The presence of autologous activated PTEC inhibited the differentiation of monocytes to MoDC. Furthermore, MoDC differentiated in the presence of PTEC displayed an immature surface phenotype, efficient phagocytic capacity and, upon poly(I:C) stimulation, secreted low levels of pro-inflammatory cytokine interleukin (IL)-12p70, high levels of anti-inflammatory cytokine IL-10 and induced weak Th1 responses. Similarly, pre-formed CD1c+ BDC matured in the presence of PTEC exhibited an immature tolerogenic surface phenotype, strong endocytic and phagocytic ability and stimulated significantly attenuated T-cell proliferative responses. Conclusions Our data suggest that activated PTEC regulate human autologous immunity via complex interactions with DC. The ability of PTEC to modulate autologous DC function has important implications for the dampening of pro-inflammatory immune responses within the tubulointerstitium in renal injuries. Further dissection of the mechanisms of PTEC modulation of autologous immune responses may offer targets for therapeutic intervention in renal medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title complex [Cs(C7H3N2O6)(H2O)2]n, the Cs salt of 3,5-dinitrobenzoic acid, the metal complex centres have have irregular CsO8 coordination, comprising two water molecules (one triply bridging, the other monodentate) and four O-donors from two nitro groups and one bridging carboxyl-O donor group from the ligand. Intra-unit O-H...O hydrogen-bonding interactions involving both water molecules are observed in the three-dimensional polymeric complex structure.