891 resultados para Path integral approach
Resumo:
This paper describes the design process and curriculum for a learning cohort of eight managers who came from public and private providers of vocational education and training. While the authors found no discussion on developing research knowledge and skills of managers using learning cohorts, the general learning cohorts literature provided a number of recommendations for learning cohort design. The initial stages of the learning cohort were evaluated. The results highlighted the importance of clarifying the psychological contract and its use in self-selection, supported the recommendations in the literature of the significance of the careful design and implementation of an initial residential workshop and also found support for further residential workshops of a similar design. The attendance of the cohort members in tow faculty wide core research units drew mixed comments.
Resumo:
This research shows that gross pollutant traps (GPTs) continue to play an important role in preventing visible street waste—gross pollutants—from contaminating the environment. The demand for these GPTs calls for stringent quality control and this research provides a foundation to rigorously examine the devices. A novel and comprehensive testing approach to examine a dry sump GPT was developed. The GPT is designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. This device has not been previously investigated. Apart from the review of GPTs and gross pollutant data, the testing approach includes four additional aspects to this research, which are: field work and an historical overview of street waste/stormwater pollution, calibration of equipment, hydrodynamic studies and gross pollutant capture/retention investigations. This work is the first comprehensive investigation of its kind and provides valuable practical information for the current research and any future work pertaining to the operations of GPTs and management of street waste in the urban environment. Gross pollutant traps—including patented and registered designs developed by industry—have specific internal configurations and hydrodynamic separation characteristics which demand individual testing and performance assessments. Stormwater devices are usually evaluated by environmental protection agencies (EPAs), professional bodies and water research centres. In the USA, the American Society of Civil Engineers (ASCE) and the Environmental Water Resource Institute (EWRI) are examples of professional and research organisations actively involved in these evaluation/verification programs. These programs largely rely on field evaluations alone that are limited in scope, mainly for cost and logistical reasons. In Australia, evaluation/verification programs of new devices in the stormwater industry are not well established. The current limitations in the evaluation methodologies of GPTs have been addressed in this research by establishing a new testing approach. This approach uses a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The physical model consisted of a 50% scale model GPT rig with screen blockages varying from 0 to 100%. This rig was placed in a 20 m flume and various inlet and outflow operating conditions were modelled on observations made during the field monitoring of GPTs. Due to infrequent cleaning, the retaining screens inside the GPTs were often observed to be blocked with organic matter. Blocked screens can radically change the hydrodynamic and gross pollutant capture/retention characteristics of a GPT as shown from this research. This research involved the use of equipment, such as acoustic Doppler velocimeters (ADVs) and dye concentration (Komori) probes, which were deployed for the first time in a dry sump GPT. Hence, it was necessary to rigorously evaluate the capability and performance of these devices, particularly in the case of the custom made Komori probes, about which little was known. The evaluation revealed that the Komori probes have a frequency response of up to 100 Hz —which is dependent upon fluid velocities—and this was adequate to measure the relevant fluctuations of dye introduced into the GPT flow domain. The outcome of this evaluation resulted in establishing methodologies for the hydrodynamic measurements and gross pollutant capture/retention experiments. The hydrodynamic measurements consisted of point-based acoustic Doppler velocimeter (ADV) measurements, flow field particle image velocimetry (PIV) capture, head loss experiments and computational fluid dynamics (CFD) simulation. The gross pollutant capture/retention experiments included the use of anthropogenic litter components, tracer dye and custom modified artificial gross pollutants. Anthropogenic litter was limited to tin cans, bottle caps and plastic bags, while the artificial pollutants consisted of 40 mm spheres with a range of four buoyancies. The hydrodynamic results led to the definition of global and local flow features. The gross pollutant capture/retention results showed that when the internal retaining screens are fully blocked, the capture/retention performance of the GPT rapidly deteriorates. The overall results showed that the GPT will operate efficiently until at least 70% of the screens are blocked, particularly at high flow rates. This important finding indicates that cleaning operations could be more effectively planned when the GPT capture/retention performance deteriorates. At lower flow rates, the capture/retention performance trends were reversed. There is little difference in the poor capture/retention performance between a fully blocked GPT and a partially filled or empty GPT with 100% screen blockages. The results also revealed that the GPT is designed with an efficient high flow bypass system to avoid upstream blockages. The capture/retention performance of the GPT at medium to high inlet flow rates is close to maximum efficiency (100%). With regard to the design appraisal of the GPT, a raised inlet offers a better capture/retention performance, particularly at lower flow rates. Further design appraisals of the GPT are recommended.
Resumo:
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.
Resumo:
The importance of the first year experience (FYE) to success at university is well documented and supported with the transition into university regarded as crucial. While there is also support for the notion that a successful FYE should have a whole-of-institution focus and models have been proposed, many institutions still face challenges in achieving institution-wide FYE program implementation. This paper discusses the origins, theoretical and empirical bases and structure of an institution-wide approach to the FYE. It uses a case study of the Transitions In Project (TIP) at the Queensland University of Technology to illustrate how institution-wide FYE program implementation can be achieved and sustained. TIP had four inter-related projects focussing on at-risk students, first year curriculum, learning resources and staff development. The key aim of TIP was to identify good practice and institutionalise it in a sustainable way. The degree of success in achieving this is evaluated.
Resumo:
Live coding performances provide a context with particular demands and limitations for music making. In this paper we discuss how as the live coding duo aa-cell we have responded to these challenges, and what this experience has revealed about the computational representation of music and approaches to interactive computer music performance. In particular we have identified several effective and efficient processes that underpin our practice including probability, linearity, periodicity, set theory, and recursion and describe how these are applied and combined to build sophisticated musical structures. In addition, we outline aspects of our performance practice that respond to the improvisational, collaborative and communicative requirements of musical live coding.
Resumo:
This paper reviews some past emphases in IHRM, and recommends that IHR teachers and practitioners consider using project management methodologies to tighten the focus of our diverse activities.
Advertising & Promotion : An Integrated Marketing Communications Approach, 2nd Edition [Book Review]
Resumo:
Advertising & Promotion’s second edition maintains a sharp and updated focus on the advertising industry, providing interesting ideas for both students and advertising professionals. Not only does the author demonstrate how agencies, businesses and organisations research, create and monitor particular campaigns, but also the extent to which advertising texts are themselves embedded in everyday contemporary culture. For me one of the strengths of the book is how the research brings together the managerial side of the industry, its sociology and political dynamics, with the cultural and ethical implications of advertising consumption.
Resumo:
This paper presents a systems-level approach for adjudicating the prioritization, selection, and planning of inservcie professional development (PD) for teachers. We present a step-by-step model for documenting and assessing system-wide 'bids' for professional development programs
Resumo:
In this chapter we present a case study set in Beloi, a fishing village located on Ataúro Island, 30 km across the sea from Díli, capital of Timor-Leste (East-Timor). We explore the tension between tourism development, food security and marine conservation in a developing country context. In order to better understand the relationships between the social, ecological and economic issues that arise in tourism planning we use an approach and associated methodology based on storytelling, complexity theory and concept mapping. Through testing scenarios with this methodology we hope to evaluate which trade-offs are acceptable to local people in return for the hoped-for economic boost from increased tourist visitation and associated developments.
Resumo:
Background: A State-based industry in Australia is in the process of developing a programme to prevent AOD impairment in the workplace. The objective of this study was to determine whether the Theory of Planned Behaviour can help explain the mechanisms by which behaviour change occurs with regard to AOD impairment in the workplace. ---------- Method: A survey of 1165 employees of a State-based industry in Australia was conducted, and a response rate of 98% was achieved. The survey included questions relevant to the Theory of Planned Behaviour: behaviour; behavioural intentions; attitude; perceptions of social pressure; and perceived behavioural control with regard to workplace AOD impairment. ---------- Findings: Less than 3% of participants reported coming to work impaired by AODs. Fewer than 2% of participants reported that they intended to come to work impaired by AODs. The majority of participants (over 80%) reported unfavourable attitudes toward AOD impairment at work. Logistic regression analyses suggest that, consistent with the theory of planned behaviour: attitudes, perceptions of social pressure, and perceived behavioural control with regard to workplace AOD impairment, all predict behavioural intentions (P < .001); and behavioural intentions predict (self-reported) behaviour regarding workplace AOD impairment (P < .001). ---------- Conclusions: The Theory of Planned Behaviour appears to assist with understanding the mechanisms by which behaviour change occurs with regard to AOD impairment in the workplace. An occupational AOD programme which targets those mechanisms for change may improve its impact in preventing workplace AOD impairment.
Resumo:
Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.
Resumo:
The alliance project delivery method is used for approximately one third of all Australian government infrastructure projects representing $8-$10 billion per annum. Despite its widespread use, little is known about the differences between estimated project cost and actual cost over the project lifecycle. This paper presents the findings of research into 14 Australian government alliance case studies investigating the observed cost uplift over each project’s lifecycle. I find that significant cost uplift is likely and that this uplift is greater than that afflicting traditional delivery methods. Furthermore, most of the cost uplift occurs at a different place in the project lifecycle, namely between Business Case and Contractual Commitment.
Resumo:
This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.
Resumo:
In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.