937 resultados para Paraventricular nucleus
Resumo:
Prolyl oligopeptidase (POP, prolyl endopeptidase, EC 3.4.21.26) is a serine-type peptidase (family S9 of clan SC) hydrolyzing peptides shorter than 30 amino acids. POP has been found in various mammalian and bacterial sources and it is widely distributed throughout different organisms. In human and rat, POP enzyme activity has been detected in most tissues, with the highest activity found mostly in the brain. POP has gained scientific interest as being involved in the hydrolyzis of many bioactive peptides connected with learning and memory functions, and also with neurodegenerative disorders. In drug or lesion induced amnesia models and in aged rodents, POP inhibitors have been able to revert memory loss. POP may have a fuction in IP3 signaling and it may be a possible target of mood stabilizing substances. POP may also have a role in protein trafficking, sorting and secretion. The role of POP during ontogeny has not yet been resolved. POP enzyme activity and expression have shown fluctuation during development. Specially high enzyme activities have been measured in the brain during early development. Reduced neuronal proliferation and differentation in presence of POP inhibitor have been reported. Nuclear POP has been observed in proliferating peripheral tissues and in cell cultures at the early stage of development. Also, POP coding mRNA is abundantly expressed during brain ontogeny and the highest levels of expression are associated with proliferative germinal matrices. This observation indicates a special role for POP in the regulation of neurogenesis during development. For the experimental part, the study was undertaken to investigate the expression and distribution of POP protein and enzymatic activity of POP in developing rat brain (from embryonic day 14 to post natal day 7) using immunohistochemistry, POP enzyme activity measurements and western blot-analysis. The aim was also to find in vivo confirmation of the nuclear colocalization of POP during early brain ontogeny. For immunohistochemistry, cryosections from the brains of the fetuses/rats were made and stained using specific antibody for POP and fluorescent markers for POP and nuclei. The enzyme activity assay was based on the fluorescence of 7- amino-4-methylcoumarin (AMC) generated from the fluorogenic substrate succinyl-glycyl-prolyl-7-amino-4-methylcoumarin (Suc-Gly-Pro-AMC) by POP. The amounts of POP protein and the specifity of POP antibody in rat embryos was confirmed by western blot analysis. We observed that enzymatic activity of POP is highest at embryonic day 18 while the protein amounts reach their peak at birth. POP was widely present throughout the developmental stages from embryonic day 14 to parturition day, although the POP-immunoreactivity varied abundantly. At embryonic days 14 and 18 notably amounts of POP was distributed at proliferative germinal zones. Furthermore, POP was located in the nucleus early in the development but is transferred to cytosol before birth. At P0 and P7 the POP-immunoreactivity was also widely observed, but the amount of POP was notably reduced at P7. POP was present in cytosol and in intercellular space, but no nuclear POP was observed. These findings support the idea of POP being involved in specific brain functions, such as neuronal proliferation and differentation. Our results in vivo confirm the previous cell culture results supporting the role of POP in neurogenesis. Moreover, an inconsistency of POP protein amounts and enzymatic activity late in the development suggests a strong regulation of POP activity and a possible non-hydrolytic role at that stage.
Resumo:
ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
Resumo:
This paper presents results from a study on the tonal aspects of quantity in Finnish lexically stressed syllables. Fourteen speakers produced a set of 66 utterances where the quantity and structure of the lexically stressed syllable was system- atically varied. The tonal aspects of the syllable nucleus and nucleus and coda in case of closed syllables was stud- ied in the framework of the Target Approximation theory as formulated by Yi Xu. The results show a clear tendency to- wards the quantity distinction and bimoracity in general in Finnish to be signalled tonally by a dynamic falling tone as opposed to a static high tone in short (one mora) nuclei.
Resumo:
Motivation: Chromatin-remodeling is an important event in the eukaryotic nucleus rendering nucleosomal DNA accessible for various transaction processes. Remodeling Factors facilitate the dynamic nature of chromatin through participation of the collective action of (i) ATP and (ii) Non-ATP dependent factors. Considering the importance of these factors in eukaryotes, we have developed, CREMOFAC, a dedicated and frequently updated web-database for chromatin-remodeling factors.Results: The database harbors factors from 49 different organisms reported in literature and facilitates a comprehensive search for them. In addition, it also provides in-depth information for the factors reported in the three widely studied mammals namely, human, mouse and rat. Further, information on literature, pathways and phylogenetic relationships has also been covered. The development of CREMOFAC as a central repository for chromatin-remodeling factors and the absence of such a pre-existing database heighten its utility thus making its presence indispensable.
Resumo:
We present observations of radio recombination lines (RRL) from the starburst galaxy Arp 220 at 8.1 GHz (H92 alpha) and 1.4 GHz (H167 alpha and H165 alpha) and at 84 GHz (H42 alpha), 96 GHz (H40 alpha) and 207 GHz (H31 alpha) using the Very Large Array and the IRAM 30 m telescope, respectively. RRLs were detected at all the frequencies except 1.4 GHz, where a sensitive upper limit was obtained. We also present continuum flux measurements at these frequencies as well as at 327 MHz made with the VLA. The continuum spectrum, which has a spectral index alpha similar to -0.6 (S-nu proportional to nu(alpha)) between 5 and 10 GHz, shows a break near 1.5 GHz, a prominent turnover below 500 MHz, and a flatter spectral index above 50 GHz. We show that a model with three components of ionized gas with different densities and area covering factors can consistently explain both RRL and continuum data. The total mass of ionized gas in the three components is 3.2 x 10(7) M., requiring 3 x 10(5) O5 stars with a total Lyman continuum production rate N-Lyc similar to 1.3 x 10(55) photons s(-1). The ratio of the expected to observed Br alpha and Br gamma fluxes implies a dust extinction A(V) similar to 45 mag. The derived Lyman continuum photon production rate implies a continuous star formation rate (SFR) averaged over the lifetime of OB stars of similar to 240 M yr(-1). The Lyman continuum photon Production rate of similar to 3% associated with the high-density H II regions implies a similar SFR at recent epochs (t < 10(5) yr). An alternative model of high-density gas, which cannot be excluded on the basis of the available data, predicts 10 times higher SFR at recent epochs. If confirmed, this model implies that star formation in Arp 220 consists of multiple starbursts of very high SFR (few times 10(3) M. yr(-1)) and short duration (similar to 10(5) yr). The similarity of IR excess, L-IR/L-Ly alpha similar to 24, in Arp 220 to values observed in starburst galaxies shows that most of the high luminosity of Arp 220 is due to the ongoing starburst rather than to a hidden active galactic nucleus (AGN). A comparison of the IR excesses in Arp 220, the Galaxy, and M33 indicates that the starburst in Arp 220 has an initial mass function that is similar to that in normal galaxies and has a duration longer than 107 yr. If there was no infall of gas during this period, then the star formation efficiency (SFE) in Arp 220 is similar to 50%. The high SFR and SFE in Arp 220 is consistent with their known dependences on mass and density of gas in star-forming regions of normal galaxies.
Resumo:
Tau is mainly distributed in cytoplasm and also found to be localized in the nucleus. There is limited data on DNA binding potential of Tau.We provide novel evidence on nicking of DNA by Tau. Tau nicks the supercoiled DNA leading to open circular and linear forms. The metal ion magnesium (a co-factor for endonuclease) enhanced the Tau DNA nicking ability, while an endonuclease specific inhibitor,aurinetricarboxylic acid (ATA) inhibited the Tau DNA nicking ability Further, we also evidenced that Tau induces B-C-A mixed conformational transition in DNA and also changes DNA stability. Tau-scDNA complex is more sensitive to DNAse I digestion indicating stability changes in DNA caused by Tau. These findings indicate that Tau alters DNA helicity and integrity and also nicks the DNA. The relevance of these novel intriguing findings regarding the role Tau in neuronal dysfunction is discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Poly(ADP-ribosyl)ation of nuclear proteins was several-fold higher in the pachytene spermatocytes than in the premeiotic germ cells of the rat. Among the histones of the pachytene nucleus, histone subtypes H2A, H1 and H3 were poly(ADP-ribosyl)ated. Based on the immunoaffinity fractionation procedure of Malik, Miwa, Sugimara & Smulson [(1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2554-2558] we have fractionated DNAase-II-solubilized chromatin into poly(ADP-ribosyl)ated chromatin (PAC) and non-poly(ADP-ribosyl)ated chromatin (non-PAC) domains on an anti-[poly(ADP-ribose)] IgG affinity matrix. Approx. 2.5% of the pachytene chromatin represented the PAC domains. A significant amount of [alpha-32P]dATP-labelled pachytene chromatin (labelled in vitro) was bound to the affinity matrix. The DNA of pachytene PAC domains had internal strand breaks, significant length of gaps and ligatable ends, namely 5'-phosphoryl and 3'-hydroxyl termini. On the other hand, the PAC domains from 18 h regenerating liver had very few gaps, if any. The presence of gaps in the pachytene PAC DNA was also evident from thermal denaturation studies. Although many of the polypeptides were common to the PAC domains of both pachytene and regenerating liver, the DNA sequences associated with these domains were quite different. A 20 kDa protein and the testis-specific histone H1t were selectively enriched in the pachytene PAC domains. The pachytene PAC domains also contained approx. 10% of the messenger coding sequences present in the DNAase-II-solubilized chromatin. The pachytene PAC domains, therefore, may represent highly enriched DNA-repair domains of the pachytene nucleus.
Resumo:
A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including C-13 satellites is proposed. The method employs a single natural abundant C-13 spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The He+He+1 interactions have been studied, as a function of the internuclear separation R, in terms of the electronic forces acting on the nuclei and the change in the charge distribution. The analysis reveals that at large R the atomic densities are polarized inwards, causing an attractive force on each nucleus, while at small R the difference in the nature of the interactions in the 2Σu and 2Σg systems is noted. It is seen that the He+He+1 (2Σu) interaction is less attractive than the He+1+He+1 interaction at lower values of R.
Resumo:
The numerical values of gA are evaluated using quantum-chromodynamic sum rules. The nuclear medium effects are taken into account by modifying the chiral symmetry breaking correlation, . Our results indicate a quenching of gA in a nuclear medium. The physical reasons for this fundamental quenching are noted to be the same for the effective mass of the nucleon bound in a nucleus being less than its free space value.
Resumo:
Breast cancer is the most common cancer among women. Although its prognosis has improved nowadays, methods to predict the progression of the disease or to treat it are not comprehensive. This thesis work was initiated to elucidate in breast carcinogenesis the role of HuR, a ubiquitously expressed mRNA-binding protein that regulates gene expression posttranscriptionally. HuR is predominantly nuclear, but it shuttles between the nucleus and the cytoplasm, and this nucleocytoplasmic translocation is important for its function as a RNA-stabilizing and translational regulator. HuR has been associated with diverse cellular processes, for example carcinogenesis. The specific aims of my thesis work were to study the prognostic value of HuR in breast cancer and to clarify the mechanisms by which HuR contributes to breast carcinogenesis. My ultimate goal is, by better understanding the role of HuR in breast carcinogenesis, to aid in the discovery of novel targets for cancer therapies. HuR expression and localization was studied in paraffin-embedded preinvasive (atypical ductal hyperplasia, ADH, and ductal carcinoma in situ, DCIS) specimens as well in sporadic and familial breast cancer specimens. Our results show that cytoplasmic HuR expression was already elevated in ADH and remained elevated in DCIS as well as in cancer specimens. Clinicopathological analysis showed that cytoplasmic HuR expression associated with the more aggressive form of the disease in DCIS, and in cancer specimens it proved an independent marker for poor prognosis. Importantly, cytoplasmic HuR expression was significantly associated with poor outcome in the subgroups of small (2 cm) and axillary lymph node-negative breast cancers. HuR proved to be the first mRNA stability protein the expression of which is associated in breast cancer with poor outcome. To explore the mechanisms of HuR in breast carcinogenesis, lentiviral constructs were developed to inhibit and to overexpress the HuR expression in a breast epithelial cell line (184B5Me). Our results suggest that HuR mediates breast carcinogenesis by participating in processes important in cell transformation, in programmed cell death, and in cell invasion. Global gene expression analysis shows that HuR regulates genes participating in diverse cellular processes, and affects several pathways important in cancer development. In addition, we identified two novel target transcripts (connective tissue growth factor, CTGF, and Ras oncogene family member 31, RAB31) for HuR. In conclusion, because cytoplasmic HuR expression in breast cancer can predict the outcome of the disease it could serve in clinics as a prognostic marker. HuR accumulates in the cytoplasm even at its non-invasive stage (ADH and DCIS) of the carcinogenic process and supports functions essential in cell alteration. These data suggest that HuR contributes to carcinogenesis of the breast epithelium.
Resumo:
The four papers summarized in this thesis deal with the Archean and earliest Paleoproterozoic granitoid suites observed in the Suomussalmi district, eastern Finland. Geologically, the area belongs to the Kianta Complex of the Western Karelian Terrane in the Karelian Province of the Fennoscandian shield. The inherited zircons up to 3440 Ma old together with Sm Nd and Pb Pb data confirm the existence of previously anticipated Paleoarchean protocrust in Suomussalmi. The general timeline of granitoid magmatism is similar to that of the surrounding areas. TTG magmatism occurred in three distinct phases: ca 2.95 Ga, 2.83 2.78 Ga and 2.76 2.74 Ga. In Suomussalmi the TTGs sensu stricto (K2O/Na2O less than 0.5) belong to the low-HREE type and are interpreted as partial melts of garnet amphibolites, which did not significantly interact with mantle peridotites. Transitional TTGs (K2O/Na2O more than 0.5), present in Suomussalmi and absent from surrounding areas, display higher LILE concentrations, but otherwise closely resemble the TTGs sensu stricto and indicate that recycling of felsic crust commenced in Suomussalmi 200 Ma earlier than in surrounding areas. The youngest TTG phase was coeval with the intrusion of the Likamännikkö quartz alkali feldspar syenite (2741 ± 2 Ma) complex. The complex contains angular fragments of ultrabasic rock, which display considerable compositional heterogeneity and are interpreted as cumulates containing clinopyroxene (generally altered to actinolite), apatite, allanite, epidote, and albite. The quartz alkali feldspar syenite cannot be regarded as alkaline sensu stricto, despite clear alkaline affinities. Within Likamännikkö there are also calcite carbonatite patches, which display mantle-like O- and C-isotope values, as well as trace element characteristics consistent with a magmatic origin, and could thus be among the oldest known carbonatites in the world. Sanukitoid (2.73 2.71 Ga) and quartz diorite suites (2.70 Ga) overlap within error margins and display compositional similarities, but can be differentiated from each other on the basis of higher Ba, K2O and LREE contents of the sanukitoids. The Likamännikkö complex, sanukitoids and quartz diorites are interpreted as originating from the metasomatized mantle and mark the diversification of the granitoid clan after 200 Ma of evolution dominated by the TTG suite. Widespread migmatization and the intrusion of anatectic leucogranitoids as dykes and intrusions of varying size took place at 2.70 2.69 Ga, following collisional thickening of the crust. The leucogranitoids and leucosomes of migmatized TTGs are compositionally alike and characterized by high silica contents and a leucocratic appearance. Due to compositional overlap, definitive discrimination between leucogranitoids and transitional TTGs requires isotope datings and/or knowledge of field relationships. Leucogranitoids represent partial melts of the local TTGs, both the sensu stricto and transitional types, mostly derived under water fluxed conditions, with possible fluid sources being late sanukitoids and quartz diorites as well as dehydrating lower crust. The Paleoproterozoic 2.44 2.39 Ga A-type granitoids of the Kianta Complex emplaced in an extensional environment are linked to the coeval and more widespread mafic intrusions and dykes observed over most of the Archean nucleus of the Fennoscandian shield. The A-type intrusions in the Suomussalmi area are interpreted as partial melts of the Archean lower crust and display differences in composition and magnetite content, which indicate differences in the composition and oxidation state of the source.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.
Resumo:
ß-arylhydrazone-imine ligand complexes of nickel(II), namely, 4,10-dimethyl-5,9-diazatrideca-4,9-diene-2,12-dione-3,11-diphenylhydrazonato nickel(II), Ni(acacpn)(N2Ph-R)2 and 1,11-diphenyl-3,9-dimethyl-4,8-diazaun-deca-3,8-diene,1,11-dione-2,10-diphenyl hydrazonato nickel(II), Ni (beacpn) (N2Ph-R)2, [R = H, o-CH3p-CH3] have been prepared by metal template reactions and characterized. Both the azomethine nitrogens and α-nitrogens of bis-hydrazone form the coordination sites of the square-planar geometry around the nickel(II) ion. Loss of CO from the molecule and subsequently an interesting methyl group migration to the nucleus of the chelate ring have been observed in the mass spectrum. Structures are proposed based on the spectral and magnetic properties.