925 resultados para Objetos concretos
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
En este trabajo partimos de un modelo teórico sobre el significado de los objetos matemáticos en que se consideran seis elementos diferenciados y se distingue entre el significado dado al objeto en una cierta institución de enseñanza y el personal adquirido por un alumno dentro de la institución. Utilizamos estas ideas para analizar los distintos significados históricos de la probabilidad y cómo han sido tenidos en cuenta en la enseñanza secundaria. Finalizamos con algunas recomendaciones para mejorar la enseñanza de la probabilidad.
Resumo:
Com o presente trabalho buscou-se articular saberes de Matemática e Biologia presentes no Ensino Médio brasileiro. Na tessitura teórica, destacaram-se Morin (conhecimento como elaboração complexa), Machado (as redes de saberes) e Lévy (metáfora do hipertexto). Consideramos como eixos para a pesquisa: 1) Possibilitar ações didáticas envolvendo de forma complexa Biologia e Matemática; 2) Biologia e Matemática como objetos de atuação do professor e instrumentos para o estudante elaborar conhecimento. A análise dos resultados permitiu a identificação de duas categorias de integração entre Biologia e Matemática no Ensino Médio: 1) instrumentos matemáticos utilizados para descrever fenômenos biológicos; 2) a Matemática utilizada para a resolução de problemas da Biologia. O trabalho apresenta-se como estudo teórico que apontou temas dos ensinos de Biologia e Matemática no Ensino Médio favorecedores de articulações e ampliação do alcance didático dessas disciplinas no Nível Médio de ensino.
Resumo:
El propósito de este trabajo es presentar una investigación de campo de tipo descriptiva en donde el empleo del geoplano como recurso didáctico contribuyó de manera positiva en la comprensión de objetos geométricos estudiados en la clase matemática. Teniendo que una de las tareas del profesor de matemáticas es conseguir que sus estudiantes comprendan los diversos conceptos que están en juego, no de una forma mecánica, sino que puedan operar con ellos en diversos contextos. (Serrazina y Matos, 1968). La intención de este modesto trabajo es ayudar a los docentes en servicio a la hora de escoger recursos didácticos y elaborar actividades que favorezcan la comprensión en los estudiantes. Este trabajo se efectúo a la luz de los niveles de Van Hiele. Se realizó en un Liceo ubicado en el Municipio Zamora del Estado Miranda con estudiantes pertenecientes a primer año de educación media general, durante el período académico 2010-2011. Se obtuvo que la mayoría de los estudiantes se ubican en el nivel de análisis del modelo antes nombrado.
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
Los estudiantes de enseñanza media se enfrentan al uso e interpretación de los parámetros en funciones polinomiales, lugares geométricos y expresiones algebraicas en general. Este hecho conduce a la necesidad no sólo de diferenciar los parámetros de otro tipo de literales como variables o incógnitas, sino también dar un sentido de uso a los mismos con la finalidad de agrupar los objetos matemáticos en entidades más generales como son las familias de funciones. El presente taller tiene como objetivo mostrar la influencia que puede tener el uso de un recurso tecnológico dinámico en la comprensión de esta polisemia de las literales, así como en la optimización de la ideas como puede ser la generalización.
Resumo:
Presentamos una investigación cuyo objetivo es analizar la comprensión de la recta tangente en un entorno de aprendizaje en el que se puede usar un CAS. Desde las perspectivas históricas y cognitivas (APOS) analizaremos una serie textos de Bachillerato e Ingeniería que nos permitirá fijar una propuesta para la comprensión de la recta tangente como el límite de una sucesión de rectas secantes que tienen en común el punto de tangencia. Finalmente, mostramos unas herramientas diseñadas con el asistente matemático MATLAB© (génesis instrumental), accesibles online, que pueden ayudar a los estudiantes, especialmente en el registro gráfico, a construir los objetos cognitivos descritos en la descomposición genética.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
Este trabajo presenta una experiencia realizada con cuatro grupos de alumnos provenientes de dos escuelas locales pertenecientes a noveno año de la EGB y a primer año de la Educación Polimodal. En el mismo se investiga la construcción de la idea de infinito mediante la elaboración del fractal copo de nieve. Se analizan logros y dificultades. Los fractales permiten un acercamiento entre las estructuras analíticas y las formaciones gráficas que muestran los procesos iterativos que repiten infinitamente procesos finitos. Dichos procesos permiten obtener una figura autosemejante. La visualización de estos objetos permite la comprensión de los procesos de cambios de acuerdo a la transformación de la misma figura como así también cuestionarse el por qué de dicho cambio y si el mismo es o no controlable.
Resumo:
Esta experiencia, abordó la problemática relacionada con el aprendizaje y la enseñanza de la geometría y en particular, el proceso de conceptualización y formulación de definiciones de objetos geométricos como los poliedros. El propósito de esta experiencia en la línea de la metodología estudio de clase (MEC), es el de planificar y orientar una clase que favorezca en los estudiantes la construcción del concepto de poliedro, desde principios pedagógicos y didácticos pertinentes y válidos. Su pertinencia radica en la generación de ambientes de aprendizaje alternativos, los cuales privilegian la construcción de conocimiento desde la interacción, además se favorece el proceso de conceptualización tan importante en el desarrollo del pensamiento y las competencias matemáticas.
Resumo:
Se hace un estudio algebraico y geométrico de los campanoides, nuevos objetos basados en los polígonos regulares, se definen, clasifican y muestra el proceso de su construcción. En este trabajo analizo específicamente el Campanoide Triangular indicando sus características, modelo algebraico que lo define y la ecuación para calcular su ´área en términos de la base, al final se muestran unos mosaicos construidos con estos campanoides.
Resumo:
Los conocimientos geométricos aparecen en las distintas culturas desde el principio, quizá unidos con los conceptos de belleza y armonía. En este trabajo se presenta un ejemplo de cómo este abordaje se puede llevar a cabo en la escuela en el nivel medio ligado con su aparición. Es posible encontrar múltiples ejemplos de distintos tipos de aplicaciones en los que los objetos geométricos y sus propiedades se hacen necesarios para estudiar las formas. Las catedrales góticas suministran un bello ejemplo en el que la geometría aparece no sólo en las formas de las construcciones arquitectónicas, sino en particular en las composiciones artísticas de las ventanas. Se propone realizar un análisis de cuáles fueron los conceptos geométricos que manejaron los constructores para lograr estas obras de arte.
Resumo:
Concebimos que la modelación de fenómenos es una práctica que está ligada a la construcción de conocimientos matemáticos y en este sentido se han realizado investigaciones entorno a su incorporación al contexto escolar. Sin embargo, el incorporar la experimentación en el aula de matemáticas conlleva dificultades, una de ellas es la carencia de material de laboratorio. El laboratorio virtual es un proyecto que intenta suplir la ausencia de un laboratorio físicamente, sin embargo, esta sustitución desencadena diferentes relaciones entre los actores. En este trabajo se pretende mostrar como es que un laboratorio simulado, podría contribuir a la incorporación a sistemas escolares concretos de diseños de aprendizaje basados en las prácticas sociales de modelación. Se da evidencia de cómo se desarrollan acciones e interacciones colaborativas alrededor del laboratorio virtual.
Resumo:
Este clip va dedicado a la esperanza. Por supuesto no se trata de interferir en la política de la comunidad de Madrid, ni de hacer una reflexión sobre virtudes cristianas, ni de reconocer en público que esta palabra forma parte de nuestros sentimientos más nobles cuando estamos dando clase. Lo que nos proponemos es hacer referencia a tres casos muy concretos de esperanza matemática.
Resumo:
La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.