914 resultados para ODONTOGENIC TUMORS
Resumo:
Soft tissue sarcomas (STS) are rare tumors of soft tissue occurring most frequently in the extremities. Modern treatment of extremity STS is based on limb-sparing surgery combined with radiotherapy. To prevent local recurrence, a healthy tissue margin of 2.5 cm around the resected tumor is required. This results in large defects of soft tissue and bone, necessitating the use of reconstructive surgery to achieve wound closure. When local or pedicled soft tissue flaps are unavailable, reconstruction with free flaps is used. Free flaps are elevated at a distant site, and have their blood flow restored at the recipient site through microvascular anastomosis. When limb-sparing surgery is made impossible, amputation is the only option. Proximal amputation such as forequarter amputation (FQA) causes considerable morbidity, but is nevertheless warranted for carefully selected patients for cure or palliation. 116 patients treated in 1985 - 2006 were included in the study. Of these, 93 patients treated with limb-sparing surgery and microvascular reconstructive surgery after resection of extremity STS. 25 patients who underwent FQA were also included. Patients were identified and their medical records retrospectively reviewed. In all, 105 free flap procedures were performed for 103 patients. A total of 95 curatively treated STS patients were included in survival analysis. The latissimus dorsi, used in 56% of cases, was the most frequently used free flap. Free flap success rate was 96%. There were 9% microvascular anastomosis complications and 15% wound complications. For curatively treated STS patients, local recurrence-free survival at 5 years was 73.1%, metastasis-free survival 58.3%, and overall disease-specific survival 68.9%. Functional results were good, with 75% of patients regaining normal or near-normal function after lower extremity, and 55% after upper extremity STS resection. Among curatively treated forequarter amputees, 5-year disease-free survival was 44%. In the palliatively treated group median time until disease death was 14 months. Microvascular reconstruction after extremity soft tissue sarcoma resection is safe and reliable, and produces well-healing wounds allowing early oncological treatment. Oncological outcome after these procedures is comparable to that of other extremity sarcoma patients. Functional results are generally good. Forequarter amputation is a useful treatment option for soft tissue tumors of the shoulder girdle and proximal upper extremity. When free flap coverage of extended forequarter amputation is required, the preferable flap is a fillet flap from the amputated extremity. Acceptable oncological outcome is achieved for curatively treated FQA patients. In the palliatively treated patient considerable periods of increased quality of life can be achieved.
Resumo:
Uveal melanoma is the most common primary intraocular malignancy in adults. Vision in the affected eye is threatened by both the tumor and side-effects from the treatments currently available. Poor prognosis for saving vision increases with tumor size and, consequently, enucleation has been the treatment of choice for large uveal melanomas in most centers. However, increasing evidence suggests that no survival benefit is gained (nor lost) by enucleation as compared to eye-conserving methods. The Helsinki University Eye Hospital has since 1990 offered episcleral iodine-125 plaque brachytherapy (IBT) for all patients unwilling to undergo enucleation for a large uveal melanoma. The primary aim of this study was to assess survival, local tumor recurrence and preservation of the eye and vision after IBT in a population-based series of 97 patients with uveal melanomas classified as large by the Collaborative Ocular Melanoma Study (COMS) criteria. Further aims included reporting the incidence of side-effects and assessing the role of intraocular dose distribution and clinical risk factors in their development. Finally, means to improve the current treatment were investigated by using computer models to compare existing plaques with collimating ones and by comparing the outcome of a subgroup of 54 IBT patients with very thick tumors with 33 patients with similarly-sized tumors managed with transscleral local resection (TSR) in Liverpool, United Kingdom. Kaplan-Meier estimates of all-cause and melanoma-specific survival at 5 years after IBT were 62% and 65%, respectively, and visually comparable with the survival experience of patients reported after enucleation by the COMS. Local recurrence developed in 6% of eyes and 84% of eyes were conserved at 5 years. Visual prognosis was guarded with 11% avoiding loss of 20/70 vision and 26% avoiding loss of 20/400 vision in the tumor eye at 2 years. Large tumor height and short distance from the posterior pole were independently associated with loss of vision. Using cumulative incidence analysis to account for competing risks, such as enucleation and metastatic death, the 5-year incidence of cataract after IBT was 79%, glaucoma 60%, optic neuropathy 46%, maculopathy 52%, persistent or recurring retinal detachment (RD) 25%, and vitreous hemorrhage 36%. In multivariate competing risks regression models, increasing tumor height was associated with cataract, iris neovascularization and RD. Maculopathy and optic neuropathy were associated with distance from the tumor to the respective structure. Median doses to the tumor apex, macula and optic disc were 81 Gy (range, 40-158), 79 Gy (range, 12-632), and 83 Gy (range, 10-377), respectively. Dose to the optic disc was independently associated with optic neuropathy, and both dose to the optic disc and dose to the macula predicted vision loss after IBT. Simulated treatment using collimating plaques resulted in clinically meaningful reduction in both optic disc (median reduction, 30 Gy) and macular (median reduction, 36 Gy) doses as compared to the actual treatment with standard plaques. In the subgroup of patients with uveal melanomas classified as large because of tumor height, cumulative incidence analysis revealed that while long-term preservation of 20/70 vision was rare after both IBT and TSR, preservation of 20/400 vision was better after TSR (32% vs. 5% at 5 years). In multivariate logistic regression models, TSR was independently associated with better preservation of 20/400 vision (OR 0.03 at 2 years, P=0.005) No cases of secondary glaucoma were observed after TSR and optic neuropathy was rare. However, local tumor recurrence was more common after TSR than it was after IBT (Cumulative incidence 41% vs. 7% at 5 years, respectively). In terms of survival, IBT seems to be a safe alternative to enucleation in managing large uveal melanomas. Local tumor control is no worse than with medium-sized tumors and the chances of avoiding secondary enucleation are good. Unfortunately, side-effects from radiotherapy are frequent, especially in thick tumors, and long-term prognosis of saving vision is consequently guarded. Some complications can be limited by using collimating plaques and by managing uveal melanomas that are large because of tumor height with TSR instead of IBT. However, the patient must be willing to accept a substantial risk of local tumor recurrence after TSR and it is best suited for cases in which the preservation of vision in the tumor eye is critical.
Resumo:
In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.
Resumo:
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer of the pleura. Asbestos exposure (through inhalation) is the most well established risk factor for mesothelioma. The current standard of care for patients suffering from MPM is a combination of cisplatin and pemetrexed (or alternatively cisplatin and raltitrexed). Most patients, however, die within 24 months of diagnosis. New therapies are therefore urgently required for this disease. Lysine acetyltransferases (KATs) including KAT5 have been linked with the development of cisplatin resistance. This gene may therefore be altered in MPM and could represent a novel candidate target for intervention. Using RT-PCR screening the expression of all known KAT5 variants was found to be markedly increased in malignant tumors compared to benign pleura. When separated according to histological subtype, KAT5 was significantly overexpressed in both the sarcomatoid and biphasic subgroups for all transcript variants. A panel of MPM cell lines including the normal pleural cells LP9 and Met5A was screened for expression of KAT5 variants. Treatment of cells with a small molecule inhibitor of KAT5 (MG-149) caused significant inhibition of cellular proliferation (p<0.0001), induction of apoptosis and was accompanied by significant induction of pro-inflammatory cytokines/chemokines.
Resumo:
Fibroblast growth factors (FGFs) regulate a plethora of biological functions, in both the embryonic and adult stages of development, binding their cognate receptors and thus activating a variety of downstream signalling pathways. Deregulation of the FGF/FGFR signalling axis, observed in multifarious tumor types including squamous non-small cell lung cancer, occurs through genomic FGFR alterations that drive ligand-independent receptor signalling or alterations that support ligand-dependent activation. Mutations are not restricted to the tyrosine kinase domain and aberrations appear to be tumor type dependent. As well as its complementarity and synergy with VEGF of particular interest is the interplay between FGFR and EGFR and the ability of these pathways to offer a compensatory signalling escape mechanism when either is inhibited. Hence there exists a rationale for a combinatorial approach to inhibition of these dysregulated pathways to reverse drug resistance. To date, several multi-target tyrosine kinase inhibitors as well as FGFR specific tyrosine kinase inhibitors (TKIs), monoclonal antibodies and FGF ligand traps have been developed. Promising preclinical data has resulted in several drugs entering clinical trials. This review explores aberrant FGFR and its potential as a therapeutic target in solid tumors.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Meibomian cell carcinoma (MCC) is a malignant tumor of the meibomian glands located in the eyelids. No information exists on the cytogenctic and genetic aspects of MCC. There is no report on the gene expression profile of MCC. Thus there is a need, for both scientific and clinical reasons, to identify genes and pathways that are involved in the development and progression of MCC. We analyzed the gene expression profile of MCC by the microarray technique. Forty-four genes were upregulated and 149 genes were downregulated in MCC. Differential expression data were confirmed for 5 genes by semiquantitative RT-PCR in MCC tumors: GTF2H4, RBM12, UBE2D3, DDX17, and LZTS1. We found dysregulation of two major pathways in MCC: MAPK and JAK/STAT. Clusters of genes on chromosomes 1, 12, and 19 were dysregUlated in MCC. The data presented here will facilitate the identification of specific markers and therapeutic targets for the treatment of MCC patients. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.
A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH
Resumo:
Eturauhassyöpä on yksi yleisimmistä syövistä länsimaissa. Eturauhassyöpä on yleensä hitaasti kehittyvä tauti. Edetessään se voi kuitenkin muuntua aggressiivisemmaksi ja aiheuttaa metastaaseja, jotka ovat pääasiallisena syynä taudin kuolleisuuteen. Androgeenit ovat merkittäviä tekijöitä eturauhassyövän patogeneesissä ja eturauhassyöpäkudos on useimmiten riippuvainen androgeeneista. Tämän vuoksi hoidon tavoitteena on estää niiden eritys kirurgisella tai kemiallisella kastraatiolla ja/tai estää androgeenien vaikutus antiandrogeeneilla. Eturauhassyöpää sekä sen hoitoon tarkoitettuja uusia lääkehoitomahdollisuuksia tutkitaan kiivaasti. Eturauhassyövän tutkimiseen on kehitetty lukematon määrä erilaisia in vivo -malleja. Koska eturauhassyöpä on yleensä androgeeneille herkkä, kuvaavat androgeeniresponsiiviset eläinmallit ihmisen tautia parhaiten. Eturauhassyövän mallintamiseen in vivo voidaan käyttää eri eläinlajeja, mutta hiiri on ylivoimaisesti käytetyin mallieläin. Immuunipuutteisiin hiiriin voidaan aiheuttaa kasvaimia inokuloimalla ihmisen kasvainsoluja tai osia ihmisen kasvaimista. Ortotooppisesti eturauhaseen inokuloitavat kasvainmallit mallintavat eturauhassyövässä esiintyvää syöpäsolujen ja stroomasolujen välistä epänormaalia vuorovaikutusta. Muuntogeeniset hiirimallit ovat yhä yleisempiä eturauhassyövän tutkimuksessa. Muuntogeenisilla malleilla voidaan mallintaa taudin kehittymistä ja sen etenemistä kokonaisuudessaan parhaiten. Eturauhasessa olevaa kasvainta ja sen kasvua on vaikea seurata ilman prostataspesifisen antigeenin (PSA) pitoisuuden mittausta tai erityisiä kuvantamistekniikoita. Tällaisia menetelmiä, kuten optista kuvantamista, käytetään yhä enemmän hyödyksi erilaisissa eturauhassyövän in vivo -malleissa. Tutkielman kokeellisen osan tavoitteena oli optimoida bioluminesenssiin perustuva optinen kuvantamismenetelmä androgeeniresponsiivisessa LNCaP-luc2-solulinjassa ortotooppisessa eturauhassyöpämallissa. Bioluminesenssikuvantaminen perustuu kasvainsolujen ilmentämän lusiferaasin katalysoimaan reaktioon, jossa entsyymin substraatti, lusiferiini, hapettuu ja tuottaa näkyvää valoa. Lisäksi tavoitteena oli tutkia lääkehoitojen ja kastraation vasteita mallissa. Bioluminesenssiin perustuvalla kuvantamisella oli mahdollista seurata eturauhaskasvainten kasvua noninvasiivisesti, reaaliaikaisesti ja toistuvasti. Bioluminesenssikuvantamisen avulla kasvainten kvantitointi oli nopeampaa kuin ultraäänikuvantamisen avulla, ja kasvainten kasvua oli myös mahdollista seurata useammin kuin seerumin PSA-mittausten avulla. Bioluminesenssikuvantamisen todettiin korreloivan paremmin PSA-pitoisuuden kanssa kuin kasvaimen todelliseen kokoon lopetushetkellä. Seerumin PSA-pitoisuus korreloi kuitenkin bioluminesenssimittausta paremmin eturauhaskasvaimen kokoon tässä kokeessa. Kasvainten oletettua suurempaa kokoa voidaan pitää todennäköisimpänä syynä sille, ettei lääkehoitojen tai kastraation todettu vaikuttavan kasvainten kasvuun bioluminesenssikuvantamisella mitattuna. Bioluminesenssikuvantaminen ei sovellu suurille eikä nekroottisille kasvaimille, sillä kuvantamismenetelmä toimii vain elävillä soluilla. Bioluminesenssikuvantamisen hyödyntämisen kannalta oleellista tässä mallissa on myös lusiferiini-injektion onnistuminen. Jatkotutkimuksia tarvitaan edelleen mallin validoimiseksi mm. lääkehoitojen vasteiden osoittamiseksi.
Resumo:
Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.
Resumo:
Cancer is becoming the leading cause of deaths in the world. As 90% of all deaths from cancer are caused by metastasis, discovery of the mechanisms behind cancer cell invasion and metastasis is of utmost importance. Only new effective therapies targeting cancer progression can reduce cancer mortality rates. The aim of this study was to identify molecules that are relevant for tumor cell invasion and spreading in fibrosarcomas and melanomas, and to analyze their potential for cancer biomarkers or therapeutic targets. First, the gene expression changes of normal cells and transformed cells showing high invasiveness, S-adenosylmethionine decarboxylase (AdoMetDC)-transfected murine fibroblasts and human melanoma cells, were studied by microarray analyses. The function of the identified candidate molecules were then studied in detail in these cell lines. Finally, the physiological relevance of the identified changes was studied by immunohistochemical analyses of human sarcoma and melanoma specimens or by a mouse xenograft model. In fibrosarcoma cells, the most remarkable change detected was a dramatic up-regulation of the actin-sequestering molecule thymosin beta 4 (TB4), which was shown to be important for the transformed phenotype of the AdoMetDC-transfected cells (Amdc-s and -as). A sponge toxin latrunculin A, inhibiting the binding of TB4 to actin, was found to selectively inhibit the migration and invasion of these cells. Further, Amdc-s-induced mouse tumors and human high-grade sarcomas were found to show intense TB4 immunostaining. In addition to TB4, integrin subunits alfa 6 and beta 7 (ItgA6 and ItgB7) were found to be up-regulated in Amdc-s and -as cells. ItgA6 was shown to dimerize mainly with ItgB1 in Amdc-s. Inhibition of ItgA6 or ItgB1 function with neutralizing antibodies fully blocked the invasiveness of Amdc-s cells, and importantly also human HT-1080 fibrosarcoma cells, in three-dimensional (3D)-Matrigel mimicking tumor extracellular matrix (ECM). By immunohistochemical analyses, strong staining for ITGA6 was detected in human high-grade fibrosarcomas and other sarcomas, especially at the invasion fronts of the tumors. In the studied melanoma cell lines, the expression levels of the adhesion-related ECM proteins tenascin-C (TN-C), fibronectin (FN), and transforming growth factor beta-induced (TGFBI) were found to be highly up-regulated. By immunohistochemistry, intense TN-C and FN staining was detected in invasive and metastatic melanoma tumors, showing co-localization (together with procollagen-I) in tubular meshworks and channels around the invading melanoma cells. In vitro, TN-C and FN were further found to directly stimulate the migration of melanoma cells in 3D-collagen-I matrix. The third candidate protein, TGFBI, was found to be an anti-adhesive molecule for melanoma cells, and knockdown of its expression in metastatic melanoma cells (TGFBI-KD cells) led to dramatically impaired tumor growth in immunocompromized mice. Interestingly, the control tumors showed intense TGFBI immunostaining in the invasion fronts, showing partial co-localization with the fibrillar FN staining, whereas the small TGFBI-KD cell-induced tumors displayed amorphous, non-fibrillar FN staining. These data suggest an important role for TGFBI in FN fibrillogenesis and melanoma progression. In conclusion, we have identified several invasion-related molecules, which show potential for cancer diagnostic or prognostic markers, or therapeutic targets. Based on our previous and present fibrosarcoma studies, we propose the possibility of using ITGA6 antagonists (affecting tumor cell adhesion) in combination with TB4 inhibitors (affecting tumor cell migration) and cathepsin L inhibitors (affecting the degradation of basement membrane and ECM proteins) for the treatment of fibrosarcomas and other tumors overexpressing these molecules. With melanoma cells, in turn, we point to the importance of three secreted ECM proteins, TN-C, FN, and TGFBI, in melanoma progression. Of these, especially the potential of TN-C as a prognostic melanoma biomarker and TGFBI as a promising therapeutic target molecule are clearly worth additional studies.
Resumo:
Merkel cell carcinoma (MCC) is a rare cutaneous malignancy that occurs predominantly on sun exposed skin areas. A new polyomavirus (MCPyV) was identified in MCC tumor tissues in 2008 suggesting that a viral infection might be an etiological factor. A typical MCC is a rapidly growing painless purple nodule. In its early stage it can be misjudged by its appearance as a cyst or abscess. Recurrences are common and approximately half of the patients will develop lymph node metastases and third of the patents will have distant metastases. It affects mostly elderly persons at an average age of 70 at the time of diagnosis. MCC was first described in 1972 and the first MCC patient in Finland was identified in 1983. MCC has been poorly recognized, but increased awareness and better diagnostic accuracy has increased the incidence since the early years. In this study, all cases with a notation of MCC during 1979 2008 were obtained from the Finnish Cancer Registry. Based on this data, the incidence is 0.11 for men and 0.12 for women. It is similar than that of other Nordic countries, but lower than in the USA. For clinical series, the files of patients diagnosed with MCC during 1983 2004 were reviewed, and the tissue samples were re-evaluated, if available (n=181). Third of the patients were men, and the most common site of the primary tumor was the head and neck (53%). The majority of the patients (86%) presented with a clinically node-negative (Stage I or II) disease, but the disease recurred in 38% of them. The treatment schemes were heterogeneous. No additional benefit from a wide margin (≥2 cm) was found compared to a margin of 0.1-1.9 cm, but intralesional excision was more often associated with local recurrence. None of the patients with Stage I-II disease who had received postoperative radiotherapy had local recurrence during the follow-up period. The 5-year relative survival ratio for Stage I disease was 68%, for Stage II 67%, for Stage III 16%, and for Stage IV 0%. The relative excess risk of death was significantly lower among women than among men. Some of these tissue samples were further analyzed for vascular invasion (n=126) by immunohistochemistry using vascular endothelial markers CD-31 and D2-40. Vascular invasion was seen in 93% of the samples and it was observed already in very small, <5mm tumors. The tissue samples were also analyzed for the presence of MCPyV by using a polymerase chain reaction (PCR) and quantitative PCR. MCPyV DNA was present in 80% of 114 samples studied. The patients with virus-positive tumors had better overall survival than patients with virus-negative tumors. Immunohistochemical analyses were performed for the expression of VEGFR-2 (n=21) and endostatin (n=19), but they had no prognostic value. Our results support the concept of treating MCC with margin-negative excision and radiotherapy to the tumor bed to reduce local recurrence. The finding of a high frequency of lymphovascular invasion reduces its value as a prognostic factor, but emphasizes the role of sentinel node biopsy even in very small primary MCC.
Resumo:
Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.