983 resultados para Naval militia.
Resumo:
This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.
Resumo:
This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.
Resumo:
A neural pattern generator based upon a non-linear cooperative-competitive feedback neural network is presented. It can generate the two standard human gaits: the walk and the run. A scalar arousal or GO signal causes a bifurcation from one gait to the next. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The model simulates the walk and the run via qualitatively different waveform shapes. The fraction of cycle that activity is above threshold distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run.
Resumo:
The 2-channel Ellias-Grossberg neural pattern generator of Cohen, Grossberg, and Pribe [1] is shown to simulate data from human bimanual coordination tasks in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed at both low and high frequencies, phase fluctuations occur at the anti-phase to in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases.
Resumo:
A four-channel neural pattern generator is described in which both the frequency and the relative phase of oscillations are controlled by a scalar arousal or GO signal. The generator is used to simulate quadruped gaits; in particular, rapid transitions are simulated in the order - walk, trot, pace, and gallop - that occurs in the cat. Precise switching control is achieved by using an arousal dependent modulation of the model's inhibitory interactions. This modulation generates a different functional connectivity in a single network at different arousal levels.
Resumo:
A neural network model of early visual processing offers an explanation of brightness effects often associated with illusory contours. Top-down feedback from the model's analog of visual cortical complex cells to model lateral geniculate nucleus (LGN) cells are used to enhance contrast at line ends and other areas of boundary discontinuity. The result is an increase in perceived brightness outside a dark line end, akin to what Kennedy (1979) termed "brightness buttons" in his analysis of visual illusions. When several lines form a suitable configuration, as in an Ehrenstein pattern, the perceptual effect of enhanced brightness can be quite strong. Model simulations show the generation of brightness buttons. With the LGN model circuitry embedded in a larger model of preattentive vision, simulations using complex inputs show the interaction of the brightness buttons with real and illusory contours.
Resumo:
Statistical properties offast-slow Ellias-Grossberg oscillators are studied in response to deterministic and noisy inputs. Oscillatory responses remain stable in noise due to the slow inhibitory variable, which establishes an adaptation level that centers the oscillatory responses of the fast excitatory variable to deterministic and noisy inputs. Competitive interactions between oscillators improve the stability in noise. Although individual oscillation amplitudes decrease with input amplitude, the average to'tal activity increases with input amplitude, thereby suggesting that oscillator output is evaluated by a slow process at downstream network sites.
Resumo:
A neural theory is proposed in which visual search is accomplished by perceptual grouping and segregation, which occurs simultaneous across the visual field, and object recognition, which is restricted to a selected region of the field. The theory offers an alternative hypothesis to recently developed variations on Feature Integration Theory (Treisman, and Sato, 1991) and Guided Search Model (Wolfe, Cave, and Franzel, 1989). A neural architecture and search algorithm is specified that quantitatively explains a wide range of psychophysical search data (Wolfe, Cave, and Franzel, 1989; Cohen, and lvry, 1991; Mordkoff, Yantis, and Egeth, 1990; Treisman, and Sato, 1991).
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
Recognition of objects in complex visual scenes is greatly simplified by the ability to segment features belonging to different objects while grouping features belonging to the same object. This feature-binding process can be driven by the local relations between visual contours. The standard method for implementing this process with neural networks uses a temporal code to bind features together. I propose a spatial coding alternative for the dynamic binding of visual contours, and demonstrate the spatial coding method for segmenting an image consisting of three overlapping objects.
Resumo:
A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.
Resumo:
The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.
Resumo:
Visual search data are given a unified quantitative explanation by a model of how spatial maps in the parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional resources as they reciprocally interact with visual representations in the prestriate cortex. The model visual representations arc organized into multiple boundary and surface representations. Visual search in the model is initiated by organizing multiple items that lie within a given boundary or surface representation into a candidate search grouping. These items arc compared with object recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches and recursive selection of new groupings until a target object io identified. This search model is algorithmically specified to quantitatively simulate search data using a single set of parameters, as well as to qualitatively explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Viri, and Garbart (1984), Cohen and Ivry (1991), Enno and Rensink (1990), He and Nakayarna (1992), Humphreys, Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the Feature Integration and Guided Search models, and grounds the analysis of visual search in neural models of preattentive vision, attentive object learning and categorization, and attentive spatial localization and orientation.
Resumo:
Intrinsic and extrinsic speaker normalization methods are systematically compared using a neural network (fuzzy ARTMAP) and L1 and L2 K-Nearest Neighbor (K-NN) categorizers trained and tested on disjoint sets of speakers of the Peterson-Barney vowel database. Intrinsic methods include one nonscaled, four psychophysical scales (bark, bark with endcorrection, mel, ERB), and three log scales, each tested on four combinations of F0 , F1, F2, F3. Extrinsic methods include four speaker adaptation schemes, each combined with the 32 intrinsic methods: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). ARTMAP and KNN show similar trends, with K-NN performing better, but requiring about ten times as much memory. The optimal intrinsic normalization method is bark scale, or bark with endcorrection, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods is LT, CSi, LS, and CS, with fuzzy ARTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.
Resumo:
A fast and efficient segmentation algorithm based on the Boundary Contour System/Feature Contour System (BCS/FCS) of Grossberg and Mingolla [3] is presented. This implementation is based on the FFT algorithm and the parallelism of the system.