860 resultados para Mining reserves
Resumo:
Serra da Canastra National Park (SCNP) is one of the most important protected areas in the Cerrado biome. Despite its importance to the conservation of rare and endangered species like Brazilian Merganser, two bills were approved in 2010 by Brazil's Chamber of Deputies aiming to reduce SCNP's official boundaries and to transform some of its parts into an Environmental Protection Area (EPA). We evaluated whether such changes would facilitate mining areas to be legally exploited within the park's area, and if those mining areas would represent a threat to Brazilian Merganser populations at SCNP. Results showed that 55% of the mining areas currently within the National Park will be located within the new EPA, and six hydrographic micro-basins inhabited by Brazilian Merganser could be affected by environmental impacts caused by mineral exploitation in those areas. For these reasons, we recommend the two bills be refused at the Federal Senate.
Resumo:
The use of cover crops affects the support capacity of soil and least limiting water range to crop growth. The objective of this study was to quantify preconsolidation pressure (sigma(p)), compression index (CI) and least limiting water range (LLWR) of a reclaimed coal mining soil under different cover crops, in Candiota, RS, Brazil. In the experiment, with randomized blocks design and four replicates, the following cover crops (treatments) were evaluated: Hemarthria altissima (Poir.) Stapf & C.E. Hubbard, treatment 1 (T1), Paspalum notatum Flugge, treatment 4 (T4), Cynodon dactilon (L) Pers., treatment 5 (T5), control Brachiaria brizantha (Hochst.) Stapf, treatment 7 (T7) and without cover crop treatment 8 (reference treatment, T8). Soil compression and least limiting water range were evaluated with undisturbed samples at a depth of 0.00-0.05 m. In order to evaluate parameters of soil compressibility, the soil samples were saturated with water and subjected to -10 kPa matric potential and then submitted to a uniaxial compression test under the following pressures: 25, 50, 100, 200, 400, 800 and 1600 kPa. Cover crops decreased the preconsolidation pressure of constructed soils after coal mining and the greatest soil reclamation was obtained with the H. altissima cover crop, where the lowest degree of soil compactness and soil load capacity were observed. Soils cultivated under H. altissima or B. brizantha presented the highest least limiting water range and these two cover crops generated similar soil critical bulk density obtained by least limiting water range and soil load support capacity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Given the established fact that obesity interferes with male reproductive functions, the present study aimed to evaluate sperm production in the testis and storage in the epididymis in a glutamate-induced model of obesity. Methods: Male rats were treated neonatally with monosodium glutamate (MSG) at doses of 4 mg/kg subcutaneously, or with saline solution (control group), on postnatal days 2, 4, 6, 8 and 10. On day 120, obesity was confirmed by the Lee index in all MSG-treated rats. After this, all animals from the two experimental groups were anesthetized and killed to evaluate body and reproductive organ weights, sperm parameters, plasma hormone levels (FSH, LH and testosterone), testicular and epididymal histo-morphometry and histopathology. Results: Significant reductions in absolute and relative weights of testis, epididymis, prostate and seminal vesicle were noted in MSG-treated animals. In these same animals plasma testosterone and follicle-stimulating hormone (FSH) concentrations were decreased, as well as sperm counts in the testis and epididymis and seminiferous epithelium height and tubular diameter. The sperm transit time was accelerated in obese rats. However, the number of Sertoli cells per seminiferous tubule and stereological findings on the epididymis were not markedly changed by obesity. Conclusions: Neonatal MSG-administered model of obesity lowers sperm production and leads to a reduction in sperm storage in the epididymis of adult male rats. The acceleration of sperm transit time can have implications for the sperm quality of these rats.
Resumo:
The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8.
Resumo:
Multi-element analysis of honey samples was carried out with the aim of developing a reliable method of tracing the origin of honey. Forty-two chemical elements were determined (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr) by inductively coupled plasma mass spectrometry (ICP-MS). Then, three machine learning tools for classification and two for attribute selection were applied in order to prove that it is possible to use data mining tools to find the region where honey originated. Our results clearly demonstrate the potential of Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) chemometric tools for honey origin identification. Moreover, the selection tools allowed a reduction from 42 trace element concentrations to only 5. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bosch Foundation, Germany
Resumo:
Background: The integration of sequencing and gene interaction data and subsequent generation of pathways and networks contained in databases such as KEGG Pathway is essential for the comprehension of complex biological processes. We noticed the absence of a chart or pathway describing the well-studied preimplantation development stages; furthermore, not all genes involved in the process have entries in KEGG Orthology, important information for knowledge application with relation to other organisms. Results: In this work we sought to develop the regulatory pathway for the preimplantation development stage using text-mining tools such as Medline Ranker and PESCADOR to reveal biointeractions among the genes involved in this process. The genes present in the resulting pathway were also used as seeds for software developed by our group called SeedServer to create clusters of homologous genes. These homologues allowed the determination of the last common ancestor for each gene and revealed that the preimplantation development pathway consists of a conserved ancient core of genes with the addition of modern elements. Conclusions: The generation of regulatory pathways through text-mining tools allows the integration of data generated by several studies for a more complete visualization of complex biological processes. Using the genes in this pathway as “seeds” for the generation of clusters of homologues, the pathway can be visualized for other organisms. The clustering of homologous genes together with determination of the ancestry leads to a better understanding of the evolution of such process.
Resumo:
Abstract Background Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.
Resumo:
Máster en Oceanografía
Resumo:
[ES]En este artículo se describe la experiencia de la aplicación de técnicas de EDM (clustering) a un curso disponible en la plataforma Ude@ de la Universidad de Antioquia. El objetivo es clasificar los patrones de interacción de los estudiantes a partir de la información almacenada en la base de datos de la plataforma Moodle. Para ello, se generan informes sobre el uso de los recursos y la autoevaluación que permiten analizar el comportamiento y los patrones de navegación de los estudiantes durante el uso del LMS (Learning Management System).
Resumo:
Il presente lavoro nasce dall’obiettivo di individuare strumenti statistici per indagare, sotto diversi aspetti, il flusso di lavoro di un Laboratorio di Anatomia Patologica. Il punto di partenza dello studio è l’ambiente di lavoro di ATHENA, software gestionale utilizzato nell’Anatomia Patologica, sviluppato dalla NoemaLife S.p.A., azienda specializzata nell’informatica per la sanità. A partire da tale applicativo è stato innanzitutto formalizzato il workflow del laboratorio (Capitolo 2), nelle sue caratteristiche e nelle sue possibili varianti, identificando le operazioni principali attraverso una serie di “fasi”. Proprio le fasi, unitamente alle informazioni addizionali ad esse associate, saranno per tutta la trattazione e sotto diversi punti di vista al centro dello studio. L’analisi che presentiamo è stata per completezza sviluppata in due scenari che tengono conto di diversi aspetti delle informazioni in possesso. Il primo scenario tiene conto delle sequenze di fasi, che si presentano nel loro ordine cronologico, comprensive di eventuali ripetizioni o cicli di fasi precedenti alla conclusione. Attraverso l’elaborazione dei dati secondo specifici formati è stata svolta un’iniziale indagine grafica di Workflow Mining (Capitolo 3) grazie all’ausilio di EMiT, un software che attraverso un set di log di processo restituisce graficamente il flusso di lavoro che li rappresenta. Questa indagine consente già di valutare la completezza dell’utilizzo di un applicativo rispetto alle sue potenzialità. Successivamente, le stesse fasi sono state elaborate attraverso uno specifico adattamento di un comune algoritmo di allineamento globale, l’algoritmo Needleman-Wunsch (Capitolo 4). L’utilizzo delle tecniche di allineamento applicate a sequenze di processo è in grado di individuare, nell’ambito di una specifica codifica delle fasi, le similarità tra casi clinici. L’algoritmo di Needleman-Wunsch individua le identità e le discordanze tra due stringhe di caratteri, assegnando relativi punteggi che portano a valutarne la similarità. Tale algoritmo è stato opportunamente modificato affinché possa riconoscere e penalizzare differentemente cicli e ripetizioni, piuttosto che fasi mancanti. Sempre in ottica di allineamento sarà utilizzato l’algoritmo euristico Clustal, che a partire da un confronto pairwise tra sequenze costruisce un dendrogramma rappresentante graficamente l’aggregazione dei casi in funzione della loro similarità. Proprio il dendrogramma, per la sua struttura grafica ad albero, è in grado di mostrare intuitivamente l’andamento evolutivo della similarità di un pattern di casi. Il secondo scenario (Capitolo 5) aggiunge alle sequenze l’informazione temporale in termini di istante di esecuzione di ogni fase. Da un dominio basato su sequenze di fasi, si passa dunque ad uno scenario di serie temporali. I tempi rappresentano infatti un dato essenziale per valutare la performance di un laboratorio e per individuare la conformità agli standard richiesti. Il confronto tra i casi è stato effettuato con diverse modalità, in modo da stabilire la distanza tra tutte le coppie sotto diversi aspetti: le sequenze, rappresentate in uno specifico sistema di riferimento, sono state confrontate in base alla Distanza Euclidea ed alla Dynamic Time Warping, in grado di esprimerne le discordanze rispettivamente temporali, di forma e, dunque, di processo. Alla luce dei risultati e del loro confronto, saranno presentate già in questa fase le prime valutazioni sulla pertinenza delle distanze e sulle informazioni deducibili da esse. Il Capitolo 6 rappresenta la ricerca delle correlazioni tra elementi caratteristici del processo e la performance dello stesso. Svariati fattori come le procedure utilizzate, gli utenti coinvolti ed ulteriori specificità determinano direttamente o indirettamente la qualità del servizio erogato. Le distanze precedentemente calcolate vengono dunque sottoposte a clustering, una tecnica che a partire da un insieme eterogeneo di elementi individua famiglie o gruppi simili. L’algoritmo utilizzato sarà l’UPGMA, comunemente applicato nel clustering in quanto, utilizzando, una logica di medie pesate, porta a clusterizzazioni pertinenti anche in ambiti diversi, dal campo biologico a quello industriale. L’ottenimento dei cluster potrà dunque essere finalmente sottoposto ad un’attività di ricerca di correlazioni utili, che saranno individuate ed interpretate relativamente all’attività gestionale del laboratorio. La presente trattazione propone quindi modelli sperimentali adattati al caso in esame ma idealmente estendibili, interamente o in parte, a tutti i processi che presentano caratteristiche analoghe.