976 resultados para Hipótese de Riemann
Resumo:
An efficient numerical method is presented for the solution of the Euler equations governing the compressible flow of a real gas. The scheme is based on the approximate solution of a specially constructed set of linearised Riemann problems. An average of the flow variables across the interface between cells is required, and this is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual square root averaging. The scheme is applied to a test problem for five different equations of state.
Resumo:
An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the Euler equations for the compressible flow of an ideal gas. A linearised Riemann problem is defined, and a scheme based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to the usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. The scheme is applied to a shock tube problem and a blast wave problem. Each approximate solution compares well with those given by other schemes, and for the shock tube problem is in agreement with the exact solution.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.
Resumo:
An efficient algorithm based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations in a generalised coordinate system. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme has good jump capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for flow past a circular obstruction.
Resumo:
An efficient algorithm based on flux difference splitting is presented for the solution of the three-dimensional equations of isentropic flow in a generalised coordinate system, and with a general convex gas law. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The algorithm requires only one function evaluation of the gas law in each computational cell. The scheme has good shock capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for Mach 3 flow of air past a circular cylinder. Furthermore, the algorithm also applies to shallow water flows by employing the familiar gas dynamics analogy.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow water equations in open channels. A linearised problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
An approximate Riemann solver, in a Lagrangian frame of reference, is presented for the compressible flow equations with cylindrical and spherical symmetry, including flow in a duct of variable cross section. The scheme is applied to a cylindrically symmetric problem involving the interaction of shocks.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow-water equations in open channels, together with an extension to two-dimensional flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearized problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break problem. The numerical results are compared with the exact solution, or other numerical results, where available.
Resumo:
Neste estudo comparamos esquemas de alta e baixa dose de antimoniato de meglumina (AM) para o tratamento da forma cutânea de leishmaniose tegumentar americana, em pacientes oriundos do estado do Rio de Janeiro. OBJETIVO: Comparar a eficácia representada pela cura imediata (epitelização em 120 dias), tardia (cicatrização em 360 dias) e definitiva (ausência de reativação ou lesão mucosa em 720 dias) e toxicidade (clínica, laboratorial e eletrocardiográfica) com duas diferentes doses de tratamento com AM para leishmaniose cutânea (LC) e comparar os critérios de cura clínica aqui adotados com aqueles estabelecidos pelo Ministério da Saúde. MÉTODO: Ensaio clínico de não inferioridade, controlado, randomizado, cego e de fase III, com 60 pacientes com LC alocados em dois grupos de tratamento: (A) 20mg Sb5+/kg/dia por 20 dias e (B) 5mg Sb5+/kg/dia por 30 dias administrados por via intramuscular. RESULTADOS: Pacientes dos grupos A e B apresentaram, respectivamente: Cura imediata 90,0% e 86,7%, com tempo médio de epitelização de 58,7 e 54,9 dias; cura tardia por intenção de tratar 76,7% e 73,3%; e cura tardia por análise de protocolo 84,6% e 75,9%. Dos 53 pacientes que apresentaram epitelização em até 120 dias, 44 (83,4%) evoluíram para cura tardia. Quando avaliados conjuntamente, os efeitos adversos (EA) clínicos, laboratoriais e eletrocardiográficos foram mais frequentes no grupo A que no grupo B (médias 7,9 e 4,7) e mais graves [RR= 2,22 (IC 95% 1,22-4,06) p=0,0045] no grupo A. Os EA clínicos graus 2 e 3 foram mais frequentes no grupo A; RR=6,5 (IC 95% 1,60-26,36) p=0,001 Os EA laboratoriais foram mais frequentes RR=1,39 (IC 95% 0,99-1,93) p=0,05 e mais graves (graus 2, 3 ou 4) RR=4,67 (IC 95% 1,49-14,59) p=0,0016 no grupo A. Hiperlipasemia foi a alteração laboratorial mais frequente e mais grave. Pacientes do grupo A apresentaram um RR=4,0, p=0,006 de desenvolver hiperlipasemia moderada a grave, com fração atribuível de 75%. Dez pacientes (16,7%) necessitaram suspender o tratamento temporariamente por apresentarem QTc >0,46ms, entretanto não houve diferença entre os grupos.CONCLUSÃO: A dose de 5mg Sb5+/kg/dia mostrou-se menos tóxica, mais segura e de menor custo no tratamento da LC, especialmente em idosos e pacientes com co-morbidades, atualmente com restritas opções terapêuticas. Entretanto, a hipótese de não inferioridade da dose baixa em relação a dose alta não pôde ser comprovada A epitelização com 120 dias, seguida de progressiva melhora no sentido da cicatrização em 360 dias sugere um possível benefício com a flexibilização dos critérios de cura da LC
Resumo:
We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.
Resumo:
Details are given of a boundary-fitted mesh generation method for use in modelling free surface flow and water quality. A numerical method has been developed for generating conformal meshes for curvilinear polygonal and multiply-connected regions. The method is based on the Cauchy-Riemann conditions for the analytic function and is able to map a curvilinear polygonal region directly onto a regular polygonal region, with horizontal and vertical sides. A set of equations have been derived for determining the lengths of these sides and the least-squares method has been used in solving the equations. Several numerical examples are presented to illustrate the method.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
We prove that
∑k,ℓ=1N(nk,nℓ)2α(nknℓ)α≪N2−2α(logN)b(α)
holds for arbitrary integers 1≤n1<⋯