The Dirichlet-to-Neumann map for the elliptic sine Gordon


Autoria(s): Fokas, A. S.; Pelloni, Beatrice
Data(s)

2012

Resumo

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.

Formato

text

Identificador

http://centaur.reading.ac.uk/26388/1/PFNonlin.pdf

Fokas, A. S. and Pelloni, B. <http://centaur.reading.ac.uk/view/creators/90000759.html> (2012) The Dirichlet-to-Neumann map for the elliptic sine Gordon. Nonlinearity, 25 (4). 1011. ISSN 1361-6544 doi: 10.1088/0951-7715/25/4/1011 <http://dx.doi.org/10.1088/0951-7715/25/4/1011>

Idioma(s)

en

Publicador

Institute of Physics

Relação

http://centaur.reading.ac.uk/26388/

creatorInternal Pelloni, Beatrice

10.1088/0951-7715/25/4/1011

Tipo

Article

PeerReviewed