966 resultados para HILL-WHEELER EQUATION
Resumo:
It is shown that the paper Solutions of the Duffin-Kemmer-Petiau equation for a pseudoscalar potential step in (1+1) dimensions by Abdelmalek Boumali has a number of misconceptions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.
Resumo:
OBJETIVO: comparar medidas de tamanhos dentários, suas reprodutibilidades e a aplicação da equação de regressão de Tanaka e Johnston na predição do tamanho dos caninos e pré-molares em modelos de gesso e digital. MÉTODOS: trinta modelos de gesso foram escaneados para obtenção dos modelos digitais. As medidas do comprimento mesiodistal dos dentes foram obtidas com paquímetro digital nos modelos de gesso e nos modelos digitais utilizando o software O3d (Widialabs). A somatória do tamanho dos incisivos inferiores foi utilizada para obter os valores de predição do tamanho dos pré-molares e caninos utilizando equação de regressão, e esses valores foram comparados ao tamanho real dos dentes. Os dados foram analisados estatisticamente, aplicando-se aos resultados o teste de correlação de Pearson, a fórmula de Dahlberg, o teste t pareado e a análise de variância (p < 0,05). RESULTADOS: excelente concordância intraexaminador foi observada nas medidas realizadas em ambos os modelos. O erro aleatório não esteve presente nas medidas obtidas com paquímetro, e o erro sistemático foi mais frequente no modelo digital. A previsão de espaço obtida pela aplicação da equação de regressão foi maior que a somatória dos pré-molares e caninos presentes nos modelos de gesso e nos modelos digitais. CONCLUSÃO: apesar da boa reprodutibilidade das medidas realizadas em ambos os modelos, a maioria das medidas dos modelos digitais foram superiores às do modelos de gesso. O espaço previsto foi superestimado em ambos os modelos e significativamente maior nos modelos digitais.
Resumo:
Seedling taken from 2 species of Eucalyptus growing in Brazil were electrophoretically analysed at 14 isozyme loci representing 6 enzyme systems: alpha-EST, beta-EST, SKDH, IDH, MDH, and LAP. Genetic variability measures were determined using 11 putative isozyme loci. on average, 81.8% and 54.5% of the loci were found to be polymorphic by the criterion of 95% in E. urophylla and E. grandis, respectively. The mean number of alleles per loci was 3.0 in E. urophylla and 2.5 in E. grandis. Observed mean heterozygosity was 0.283 in E. urophylla and 0.166 in E. grandis. Levels of genetic diversity in these species were similar to those in other Eucalyptus species which have widespread distributions. The possible hybridization of E. urophylla with E. alba is also discussed.
Resumo:
A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.
Resumo:
This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In literature the phenomenon of diffusion has been widely studied, however for nonextensive systems which are governed by a nonlinear stochastic dynamic, there are a few soluble models. The purpose of this study is to present the solution of the nonlinear Fokker-Planck equation for a model of potential with barrier considering a term of absorption. Systems of this nature can be observed in various chemical or biological processes and their solution enriches the studies of existing nonextensive systems.
Resumo:
The authors M. Bellamy and R.E. Mickens in the article "Hopf bifurcation analysis of the Lev Ginzburg equation" published in Journal of Sound and Vibration 308 (2007) 337-342, claimed that this differential equation in the plane can exhibit a limit cycle. Here we prove that the Lev Ginzburg differential equation has no limit cycles. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)