Global dynamics of stationary solutions of the extended Fisher-Kolmogorov equation


Autoria(s): Llibre, Jaume; Messias, Marcelo; da Silva, Paulo R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/11/2011

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

In this paper we study the fourth order differential equation d(4)u/dt(4) + q d(2)u/dt(2) + u(3) - u = 0, which arises from the study of stationary solutions of the Extended Fisher-Kolmogorov equation. Denoting x = u, y = du/dt, z = d(2)u/dt(2), v = d(3)u/dt(3) this equation becomes equivalent to the polynomial system. (x) over dot = y, (y) over dot = z, (z) over dot = v, (v) over dot = x - qz - x(3) with (x, y, z, v) is an element of R(4) and q is an element of R. As usual, the dot denotes the derivative with respect to the time t. Since the system has a first integral we can reduce our analysis to a family of systems on R(3). We provide the global phase portrait of these systems in the Poincare ball (i.e., in the compactification of R(3) with the sphere S(2) of the infinity). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657425]

Formato

12

Identificador

http://dx.doi.org/10.1063/1.3657425

Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 52, n. 11, p. 12, 2011.

0022-2488

http://hdl.handle.net/11449/22170

10.1063/1.3657425

WOS:000297938300013

WOS000297938300013.pdf

Idioma(s)

eng

Publicador

American Institute of Physics (AIP)

Relação

Journal of Mathematical Physics

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article