Global dynamics of stationary solutions of the extended Fisher-Kolmogorov equation
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/11/2011
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) In this paper we study the fourth order differential equation d(4)u/dt(4) + q d(2)u/dt(2) + u(3) - u = 0, which arises from the study of stationary solutions of the Extended Fisher-Kolmogorov equation. Denoting x = u, y = du/dt, z = d(2)u/dt(2), v = d(3)u/dt(3) this equation becomes equivalent to the polynomial system. (x) over dot = y, (y) over dot = z, (z) over dot = v, (v) over dot = x - qz - x(3) with (x, y, z, v) is an element of R(4) and q is an element of R. As usual, the dot denotes the derivative with respect to the time t. Since the system has a first integral we can reduce our analysis to a family of systems on R(3). We provide the global phase portrait of these systems in the Poincare ball (i.e., in the compactification of R(3) with the sphere S(2) of the infinity). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657425] |
Formato |
12 |
Identificador |
http://dx.doi.org/10.1063/1.3657425 Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 52, n. 11, p. 12, 2011. 0022-2488 http://hdl.handle.net/11449/22170 10.1063/1.3657425 WOS:000297938300013 WOS000297938300013.pdf |
Idioma(s) |
eng |
Publicador |
American Institute of Physics (AIP) |
Relação |
Journal of Mathematical Physics |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |