742 resultados para Game-based learning model
Resumo:
The Upper Blue Nile River Basin (UBNRB) located in the western part of Ethiopia, between 7° 45’ and 12° 45’N and 34° 05’ and 39° 45’E has a total area of 174962 km2 . More than 80% of the population in the basin is engaged in agricultural activities. Because of the particularly dry climate in the basin, likewise to most other regions of Ethiopia, the agricultural productivity depends to a very large extent on the occurrence of the seasonal rains. This situation makes agriculture highly vulnerable to the impact of potential climate hazards which are about to inflict Africa as a whole and Ethiopia in particular. To analyze these possible impacts of future climate change on the water resources in the UBNRB, in the first part of the thesis climate projection for precipitation, minimum and maximum temperatures in the basin, using downscaled predictors from three GCMs (ECHAM5, GFDL21 and CSIRO-MK3) under SRES scenarios A1B and A2 have been carried out. The two statistical downscaling models used are SDSM and LARS-WG, whereby SDSM is used to downscale ECHAM5-predictors alone and LARS-WG is applied in both mono-model mode with predictors from ECHAM5 and in multi-model mode with combined predictors from ECHAM5, GFDL21 and CSIRO-MK3. For the calibration/validation of the downscaled models, observed as well as NCEP climate data in the 1970 - 2000 reference period is used. The future projections are made for two time periods; 2046-2065 (2050s) and 2081-2100 (2090s). For the 2050s future time period the downscaled climate predictions indicate rise of 0.6°C to 2.7°C for the seasonal maximum temperatures Tmax, and of 0.5°C to 2.44°C for the minimum temperatures Tmin. Similarly, during the 2090s the seasonal Tmax increases by 0.9°C to 4.63°C and Tmin by 1°C to 4.6°C, whereby these increases are generally higher for the A2 than for the A1B scenario. For most sub-basins of the UBNRB, the predicted changes of Tmin are larger than those of Tmax. Meanwhile, for the precipitation, both downscaling tools predict large changes which, depending on the GCM employed, are such that the spring and summer seasons will be experiencing decreases between -36% to 1% and the autumn and winter seasons an increase of -8% to 126% for the two future time periods, regardless of the SRES scenario used. In the second part of the thesis the semi-distributed, physically based hydrologic model, SWAT (Soil Water Assessment Tool), is used to evaluate the impacts of the above-predicted future climate change on the hydrology and water resources of the UBNRB. Hereby the downscaled future predictors are used as input in the SWAT model to predict streamflow of the Upper Blue Nile as well as other relevant water resources parameter in the basin. Calibration and validation of the streamflow model is done again on 1970-2000 measured discharge at the outlet gage station Eldiem, whereby the most sensitive out the numerous “tuneable” calibration parameters in SWAT have been selected by means of a sophisticated sensitivity analysis. Consequently, a good calibration/validation model performance with a high NSE-coefficient of 0.89 is obtained. The results of the future simulations of streamflow in the basin, using both SDSM- and LARS-WG downscaled output in SWAT reveal a decline of -10% to -61% of the future Blue Nile streamflow, And, expectedly, these obviously adverse effects on the future UBNRB-water availibiliy are more exacerbated for the 2090’s than for the 2050’s, regardless of the SRES.
Resumo:
As exploration of our solar system and outerspace move into the future, spacecraft are being developed to venture on increasingly challenging missions with bold objectives. The spacecraft tasked with completing these missions are becoming progressively more complex. This increases the potential for mission failure due to hardware malfunctions and unexpected spacecraft behavior. A solution to this problem lies in the development of an advanced fault management system. Fault management enables spacecraft to respond to failures and take repair actions so that it may continue its mission. The two main approaches developed for spacecraft fault management have been rule-based and model-based systems. Rules map sensor information to system behaviors, thus achieving fast response times, and making the actions of the fault management system explicit. These rules are developed by having a human reason through the interactions between spacecraft components. This process is limited by the number of interactions a human can reason about correctly. In the model-based approach, the human provides component models, and the fault management system reasons automatically about system wide interactions and complex fault combinations. This approach improves correctness, and makes explicit the underlying system models, whereas these are implicit in the rule-based approach. We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the strengths of the rule-based and model-based approaches. CME uses a compiled model to determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled in an off-line process into a set of concurrent, localized diagnostic rules. These are then combined on-line along with sensor information to reconstruct the diagnosis of the system. These rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is capable of reasoning through component interactions automatically and still provide fast and correct responses. The implementation of this engine has been tested against the NEAR spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules. This evolution in fault detection will enable future missions to explore the furthest reaches of the solar system without the burden of human intervention to repair failed components.
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.
Resumo:
This paper presents an adaptive learning model for market-making under the reinforcement learning framework. Reinforcement learning is a learning technique in which agents aim to maximize the long-term accumulated rewards. No knowledge of the market environment, such as the order arrival or price process, is assumed. Instead, the agent learns from real-time market experience and develops explicit market-making strategies, achieving multiple objectives including the maximizing of profits and minimization of the bid-ask spread. The simulation results show initial success in bringing learning techniques to building market-making algorithms.
Resumo:
Intuitively, we expect that averaging --- or bagging --- different regressors with low correlation should smooth their behavior and be somewhat similar to regularization. In this note we make this intuition precise. Using an almost classical definition of stability, we prove that a certain form of averaging provides generalization bounds with a rate of convergence of the same order as Tikhonov regularization --- similar to fashionable RKHS-based learning algorithms.
Resumo:
En aquest document es detalla l’experiència que s’ha portat a terme en l’Escola Politècnica Superior de la UdG. Concretament en l’assignatura de Fonaments Físics per l’enginyeria en l’àmbit de les titulacions de Disseny Industrial i d’Enginyeria Tècnica Industrial especialitat en Mecànica. L’objectiu general de l’activitat és aportar als alumnes els coneixements bàsics sobre camps elèctrics i teoria de circuits, des dels fonaments conceptuals, passant per l’aplicació dels conceptes en problemes fins a realitzar un esquema del procés, així com la utilització de les noves tecnologies tot aplicant com a tècnica d’aprenentatge basat en problemes: Project Based Learning (APB)
Resumo:
Presentació de l’experiència que s’ha portat a terme en l’Escola Politècnica Superior de la UdG en l’assignatura de Fonaments Físics per l’Enginyeria aplicant com a tècnica l’aprenentatge basat en problemes: Project Based Learning (APB)