927 resultados para Endogenous Information Structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the Kharzeev-Levin-Nardi (KLN) model of the low x gluon distributions to fit recent HERA data on F(L) and F(2)(c)(F(2)(b)). Having checked that this model gives a good description of the data, we use it to predict F(L) and F(2)(c) to be measured in a future electron-ion collider. The results are similar to those obtained with the de Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates for both heavy-ion and electron-ion collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the event structure and double helicity asymmetry (A(LL)) of jet production in longitudinally polarized p + p collisions at root s = 200 GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity vertical bar eta vertical bar < 0.35 with the requirement of a high-momentum (> 2 GeV/c) photon in the event. Event structure, such as multiplicity, p(T) density and thrust in the PHENIX acceptance, were measured and compared with the results from the PYTHIA event generator and the GEANT detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet A(LL), photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster pT sum (p(T)(reco)). The effect of detector response and the underlying events on p(T)(reco) was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4< p(T)(reco) < 12 GeV/c with an average beam polarization of < P > = 49% we measured Lambda(LL) = -0.0014 +/- 0.0037(stat) at the lowest p(T)(reco) bin (4-5 GeV= c) and -0.0181 +/- 0.0282(stat) at the highest p(T)(reco) bin (10-12 GeV= c) with a beam polarization scale error of 9.4% and a pT scale error of 10%. Jets in the measured p(T)(reco) range arise primarily from hard-scattered gluons with momentum fraction 0: 02 < x < 0: 3 according to PYTHIA. The measured A(LL) is compared with predictions that assume various Delta G(x) distributions based on the Gluck-Reya-Stratmann-Vogelsang parameterization. The present result imposes the limit -a.1 < integral(0.3)(0.02) dx Delta G(x, mu(2) = GeV2) < 0.4 at 95% confidence level or integral(0.3)(0.002) dx Delta G(x, mu(2) = 1 GeV2) < 0.5 at 99% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show the effects of the granular structure of the initial conditions of a hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter upsilon(2). Such a structure enhances production of isotropically distributed high-p(T) particles, making upsilon(2) smaller there. Also, it reduces upsilon(2) in the forward and backward regions where the global matter density is smaller and, therefore, where such effects become more efficacious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a first-principles systematic study of the electronic structure of SiO(2) including the crystalline polymorphs alpha quartz and beta cristobalite, and different types of disorder leading to the amorphous phase. We start from calculations within density functional theory and proceed to more sophisticated quasiparticle calculations according to the GW scheme. Our results show that different origins of disorder have also different impact on atomic and electronic-density fluctuations, which affect the electronic structure and, in particular, the size of the mobility gap in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light absorption of alpha-glycine crystals grown by slow evaporation at room temperature was measured, indicating a 5.11 +/- 0.02 eV energy band gap. Structural, electronic, and optical absorption properties of alpha-glycine crystals were obtained by first-principles quantum mechanical calculations using density functional theory within the generalized gradient approximation in order to understand this result. To take into account the contribution of core electrons, ultrasoft and norm-conserving pseudopotentials, as well as an all electron approach were considered to compute the electronic density of states and band structure of alpha-glycine crystals. They exhibit three indirect energy band gaps and one direct Gamma-Gamma energy gap around 4.95 eV. The optical absorption related to transitions between the top of the valence band and the bottom of the conduction band involves O 2p valence states and C, O 2p conduction states, with the carboxyl group contributing significantly to the origin of the energy band gap. The calculated optical absorption is highly dependent on the polarization of the incident radiation due to the spatial arrangement of the dipolar glycine molecules; in the case of a polycrystalline sample, the first-principles calculated optical absorption is in good agreement with the measurement when a rigid energy shift is applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleus (46)Ti has been studied with the reaction (42)Ca((7)Li,p2n)(46)Ti at a bombarding energy of 31 MeV. Thin target foils backed with a thick Au layer were used. Five new levels of negative parity were observed. Several lifetimes have been determined with the Doppler shift attenuation method. Low-lying experimental negative-parity levels are assigned to three bands with K(pi) = 3, 0, and 4, which are interpreted in terms of the large-scale shell model, considering particle-hole excitations from d(3/2) and s(1/2) orbitals. Shell model calculations were performed using a few effective interactions. However, good agreement was not achieved in the description of either negative- or positive-parity low-lying levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that scalable multipartite entanglement among light fields may be generated by optical parametric oscillators (OPOs). The tripartite entanglement existent among the three bright beams produced by a single OPO-pump, signal, and idler-is scalable to a system of many OPOs by pumping them in cascade with the same optical field. This latter serves as an entanglement distributor. The special case of two OPOs is studied, as it is shown that the resulting five bright beams share genuine multipartite entanglement. In addition, the structure of entanglement distribution among the fields can be manipulated to some degree by tuning the incident pump power. The scalability to many fields is straightforward, allowing an alternative implementation of a multipartite quantum information network with continuous variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of structures based on nonstoichiometric SnO(2-x) compounds, besides experimentally observed, is a challenging task taking into account their instabilities. In this paper, we report on single crystal Sn(3)O(4) nanobelts, which were successfully grown by a carbothermal evaporation process of SnO(2) powder in association with the well known vapor-solid mechanism. By combining the structural data and transport properties, the samples were investigated. The results showed a triclinic semiconductor structure with a fundamental gap of 2.9 eV. The semiconductor behavior was confirmed by the electron transport data, which pointed to the variable range hopping process as the main conduction mechanism, thus giving consistent support to the mechanisms underlying the observed semiconducting character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an extensive study of the structural, magnetic, and thermodynamic properties of the oxyborate Co(3)O(2)BO(3). This is carried out through x-ray diffraction, static and dynamic magnetic susceptibilities, and specific heat experiments in single crystals in a large temperature range. The structure of Co(3)O(2)BO(3) is composed of subunits in the form of three-leg ladders where Co ions with mixed valency are located. The magnetic properties of this Co ludwigite are determined by a competition between superexchange and double-exchange interactions in the low-dimensional subunits. We discuss the observed physical properties in comparison with the only other known homometallic ludwigite, Fe(3)O(2)BO(3). The latter presents a structural distortion in the ladders and two magnetic transitions. Both features are not found in the present study of the Co ludwigite. The reason for these differences in the structural and magnetic behavior of two apparently similar compounds is discussed.