984 resultados para Electron-microscopy
Resumo:
Objective: Although the general mechanisms of dentinogenesis are understood, several aspects regarding tertiary dentine formation still deserve investigation, especially regarding the presence and distribution of some noncollagenous matrix proteins. As dentine matrix protein 1 (DMP 1) is present in primary dentine, it is possible that this protein may also be present in the dentine matrix secreted after injury, but there are no immunocytochemical studies attempting its detection in tertiary dentine. The aim of this study was to examine the ultrastructural immunolocalization of DMP 1 in the tertiary dentine after extrusion of the rat incisor. Study design: Upper incisors were extruded 3 mm and then repositioned into their sockets. After several periods, the incisors were fixed and processed for transmission electron microscopy and for immunocytochemistry for DMP 1. Results: Extrusion yielded both types of tertiary dentine, which varied in aspect and related cells. DMP 1 was found in the mineralized matrix of all types of dentine, presenting high affinity for collagen, but rare colloidal gold particles over predentine. DMP 1 was evident in the supranuclear region and inside the nucleus of some odontoblast-like cells. Conclusion: The observed association between DMP 1 and collagen seem to be essential for reactionary and reparative dentine formation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.
Resumo:
Objectives. The aim of this study was to ultrastructurally examine the influence of simvastatin on bone healing in surgically created defects in rat mandibles. Study design. Bone defects 0.8 mm in diameter were created in the buccal aspect of first mandibular molar roots and filled with 2.5% simvastatin gel, while the controls were allowed to heal spontaneously. The rats were humanely killed 7, 9, 11, or 14 days postoperatively, and the specimens were processed for scanning and transmission electron microscopy, as well as for colloidal gold immunolabeling of osteopontin. Results. The regenerated alveolar bone in the simvastatin-treated defects presented smaller marrow spaces, and the collagen fibrils were regularly packed exhibiting a lamellar bone aspect. Osteopontin was present through the bone matrix during the wound healing and alveolar bone regeneration. Conclusion. The present study provides evidence that a single topical application of 2.5% simvastatin gel improves the quality of the new bone and decreases bone resorption. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112: 170-179)
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: To examine the morphological, early and long-term microtensile bond strengths (mu TBS) of one-step self-etch systems to unground and ground enamel. Materials and Methods: Resin composite (Filtek Z250) buildups were bonded to the buccal and lingual enamel surfaces (unground, bur-cut or SiC-roughened enamel) of third molars after adhesive application using the following adhesives: Clearfil S(3) Bond (CS3); Adper Prompt L-Pop (ADP); iBond (iB) and, as the control, Clearfil SE Bond (CSE). Six tooth halves were assigned for each condition. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.8 mm(2)) and subjected to pTBS (0.5 mm/min) either immediately (IM) or after six (6M) or 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). Surface conditioning was observed under scanning electron microscopy (SEM). Results: The mu TBS in the Si-C paper and diamond bur groups were similar and higher than the unground group. No significant difference was observed among the different storage periods, except for CS3, which showed an increase in the pTBS after 12M. The etching pattern was more retentive on ground enamel. Conclusions: One-step self-etch adhesives showed higher bond strengths on ground enamel and no reductions in resin-enamel bonds were observed after 12M of water storage.
Resumo:
Objectives: To evaluate the effect of adhesive temperature on the resin-dentin bond strength (mu TBS), nanoleakage (NL), adhesive layer thickness (AL), and degree of conversion (DC) of ethanol/water- (SB) and acetone-based (PB) etch-and-rinse adhesive systems. Methods: The bottles of the two adhesives were kept at each temperature (5 degrees C, 20 degrees C, 37 degrees C, and 50 degrees C) for 2 hours before application to demineralized dentin surfaces of 40 molars. Specimens were prepared for mu TBS testing. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm/min). Three bonded sticks from each tooth were immersed in silver nitrate and analyzed by scanning electron microscopy. The DC of the adhesives was evaluated by Fourier transformed infrared spectroscopy. Results: Lower mu TBS was observed for PB at 50 degrees C. For SB, the mu TBS values were similar for all temperatures. DC was higher at 50 degrees C for PB. Higher NL and thicker AL were observed for both adhesives in the 5 degrees C and 20 degrees C groups compared to the 37 degrees C and 50 degrees C groups. The higher temperatures (37 degrees C or 50 degrees C) reduced the number of pores within the adhesive layer of both adhesive systems. Conclusions: It could be useful to use an ethanol/water-based adhesive at 37 degrees C or 50 degrees C and an acetone-based adhesive at 37 degrees C to improve adhesive performance.
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
Introduction: The present study evaluated the effect of a reducing agent on the bond strength of deproteinized root canal dentin surfaces when using a self-adhesive versus dual-cured cement. Regional differences were also evaluated. Methods: A total of 45 bovine incisor roots were divided into 3 groups: irrigation with physiologic solution (control), 10-minute deproteinization with 5% NaOCl, and 10-minute deproteinization with 5% NaOCl followed by 10 minutes of 10% ascorbic acid. Fiber posts were cemented with either RelyX 0100 or RelyX ARC (with SingleBond 2 or Clearfil SE Bond). The push-out bond strength was evaluated after 24 hours of storage. Data were submitted to three-way analyses of variance and Dunnett 13 tests (alpha = 0.05). Results: No differences between cements were observed within the testing conditions, regardless of the adhesive (P < .05). Deproteinization reduced bond strengths. Subsequent treatment with ascorbic acid was capable of reversing bond strength value changes to levels similar to those of controls. Regional radicular differences were also found, where coronal > middle > apical. Conclusions: The reducing agent was capable. of reversing the effect of dentin deproteinization, and RelyX U100 behaved similarly to RelyX ARC. (J Endod 2010;36:130-134)
Resumo:
The effect of controlled In3+ substitution on to the B-site in the perovskite oxygen ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) has been examined with a view to exploring the influence on oxygen ion conductivity. In combination with the electrical conductivity study, detailed microstructural analysis was used to verify the location of the substituting cation and to determine the nature of secondary phase formation. The indium species clearly substituted for Ga3+ on the B-site of the lattice and the electrical conductivity showed a gradual decrease as the In+3 content increased. The interpretation of this data was complicated by the formation of the secondary phases LaInO3 and LaSrGaO4. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Objectives. To test the null hypothesis that continuity of resin cement/dentin interfaces is not affected by location along the root canal walls or water storage for 3 months when bonding fiber posts into root canals. Methods. Fiber posts were luted to bovine incisors using four resinous luting systems: Multilink, Variolink II, Enforce Dual and Enforce PV. After cementation, roots were longitudinally sectioned and epoxy resin replicas were prepared for SEM analysis (baseline). The original halves were immersed in solvent, replicated and evaluated. After 3 months water storage and a second solvent immersion, a new set of replicas were made and analyzed. The ratio (%) between the length (mm) of available bonding interface and the actual extension of bonded cement/dentin interface was calculated. Results. Significant lower percent values of bond integrity were found for Multilink (8.25%) and Variolink 11 (10.08%) when compared to Enforce Dual (25.11%) and Enforce PV (27.0%) at baseline analysis. The same trend was observed after immersion in solvent, with no significant changes. However, bond integrity was significantly reduced after 3 months water storage and a second solvent immersion to values below 5% (Multilink = 3.31%, Variolink=1.87%, Enforce Dual=1.20%, and Enforce PV=0.75%). The majority of gaps were depicted at the apical and middle thirds at baseline and after immersion in solvent. After 3 months, gaps were also detected at the cervical third. Significance. Bond integrity at the cement/dentin interface was surprisingly low after cementation of fiber posts to root canals with all resin cements. That was not significantly altered after immersion in solvent, but was further compromised after 3 months water storage. Gaps were mainly seen at middle and apical thirds throughout the experiment and extended to the cervical third after water storage for 3 months. Bond integrity of fiber posts luted to root canals was affected both by location and water storage. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The organisation of cells of the planctomycete species Pirellula marina, Isosphaera pallida, Gemmata obscuriglobus, Planctomyces mat-is and Candidatus Brocadia anammoxidans was investigated based on ultrastructure derived from thin-sections of cryosubstituted cells, freeze-fracture replicas, and in the case of Gemmata obscuriglobus and Pirellllla marina, computer-aided 3-D reconstructions from serial sections of cryosubstituted cells. All planctomycete cells display a peripheral ribosome-free region, termed here the paryphoplasm, surrounding the perimeter of the cell, and an interior region including any nucleoid regions as well as ribosome-like particles, bounded by a single intracytoplasmic membrane (ICM), and termed the pirellulosome in Pirellula species. Immunogold labelling and RNase-gold cytochemistry indicates that in planctomycetes all the cell DNA is contained wholly within the interior region bounded by the ICM, and the paryphoplasm contains no DNA but at least some of the cell's RNA. The ICM in Isosphaera pallida and Planctomyces mat-is is invaginated such that the paryphoplasm forms a major portion of the cell interior in sections, but in other planctomycetes it remains as a peripheral zone. In the anaerobic ammonium-oxidising (anammox process) chemoautotroph Candidatus Brocadia anammoxidans the interior region bounded by ICM contains a further internal single-membrane-bounded region, the anam-moxosome. In Gemmata obscuriglobus. the interior ICM-bounded region contains the nuclear body, a double-membrane-bounded region containing the cell's nucleoid and all genomic DNA in addition to some RNA. Shared features of cell compartmentalisation in different planctomycetes are consistent with the monophyletic nature of the planctomycetes as a distinct division of the Bacteria. The shared organisational plan for the planctomycete cell constitutes a new type not known in cells of other bacteria.
Resumo:
We report biogenic magnetite whiskers, with axial ratios of 6: 1, elongated in the [1 1 1]. [1 1 2] and [1 0 0] directions, resembling the magnetite whiskers detected in the Martian meteorite ALH84001 by Bradley ct nl., and interpreted by those authors as evidence of vapour-phase (abiogenic) growth. Magnetosomal whiskers with extended defects consistent with screw dislocations and magnetosomes resembling flattened twinned platelets, as well as other twinning phenomena and other structural defects, are also reported here. Magnetosomes with teardrop-shaped. cuboidal. irregular and jagged structures similar to those detected in ALH84001 by McKay et al.. coprecipitation of magnetite possibly with amorphous calcium carbonate, coprecipitation of magnetite possibly with amorphous silica, the incorporation of titanium in volutin inclusions and disoriented arrays of magnetosomes are also described. These observations demonstrate that the structures of the magnetite particles in ALH84001. their spatial arrange ment and coprecipitation with carbonates and proximity to silicates are consistent with being biogenic. Electron-beam-induced flash-melting of magnetosomes produced numerous screw dislocations in the (1 1 1). (1 0 0) and (1 1 0) lattice planes and induced fusion of platelets. From this, the lack of screw dislocations reported in the magnetite particles in ALH84001 (McKay et al.. and Bradley et al.) indicates that they have a low-temperature origin.
Resumo:
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators far sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha -proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 mug l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 mug l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 mug l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction In the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 mug l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morphotype actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 mug l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 mug l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 mug l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 mug l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.
Resumo:
Purpose: To test the strength to failure and fracture mode of three indirect composite materials directly applied onto Ti-6Al-4V implant abutments vs cemented standard porcelain-fused-to-metal (PFM) crowns. Materials and Methods: Sixty-four locking taper abutments were randomly allocated to four groups and were cleaned in ethanol in an ultrasonic bath for 5 min. After drying under ambient conditions, the abutments were grit blasted and a custom 4-cusp molar crown mold was utilized to produce identical crowns (n = 16 per group) of Tescera (Bisco), Ceramage (Shofu), and Diamond Crown (DRM) according to the manufacturer`s instructions. The porcelain-fused-to-metal crowns were fabricated by conventional means involving the construction and a wax pattern and casting of a metallic coping followed by sintering of increasing layers of porcelain. All crowns were loaded to failure by an indenter placed at one of the cusp tips at a 1 mm/min rate. Subsequently, fracture analysis was performed by means of stereomicroscopy and scanning electron microscopy. One-way ANOVA at 95% level of significance was utilized for statistical analysis. Results: The single load to failure (+/- SD) results were: Tescera (1130 +/- 239 N), Ceramage (1099 +/- 257 N), Diamond Crown (1155 +/- 284 N), and PFM (1081 +/- 243 N). Stereomicroscopy analysis showed two distinct failure modes, where the loaded cusp failed either with or without abutment/metallic coping exposure. SEM analysis of the fractures showed multiple crack propagation towards the cervical region of the crown below a region of plastic deformation at the indenter contact region. Conclusion: The three indirect composites and PFM systems fractured at loads higher than those typically associated with normal occlusal function. Although each material had a different composition and handling technique, no significant differences were found concerning their single load to fracture resistance among composite systems and PFM.
Resumo:
This study evaluated the cytotoxic effects of a carbamide peroxide (CP) bleaching gel at different concentrations on odontoblast-like cells. Immortalized cells of the MDPC-23 cell line (30,000 cells/cm(2)) were incubated for 48 h. The bleaching gel was diluted in DMEM culture medium originating extracts with different CP concentrations. The amount (mu g/mL) of hydrogen peroxide (H(2)O(2)) released from each extract was measured by the leukocrystal violet/horseradish peroxidase enzyme assay. Five groups (n = 10) were formed according to the CP concentration in the extracts: G1-DMEM (control); G2-0.0001 % CP (0.025 mu g/mL H(2)O(2)); G3-0.001% CP (0.43 mu g/mL H(2)O(2)); G4-0.01% CP (2.21 mu g/mL H(2)O(2)); and G5-0.1 % CP (29.74 mu g/mL H(2)O(2)). MDPC-23 cells were exposed to the bleaching gel extracts for 60 min and cell metabolism was evaluated by the NITT assay. Data were analyzed statistically by one-way ANOVA and Tukey`s test (alpha = 0.05). Cell morphology was examined by scanning electron microscopy. The percentages of viable cells were as follows: G1, 100%; G2, 89.41%; G3, 82.4%; G4, 61.5%; and G5, 23.0%. G2 and G3 did not differ significantly (p > 0.05) from G1. The most severe cytotoxic effects were observed in G3 and G4. In conclusion, even at low concentrations, the CP gel extracts presented cytotoxic effects. This cytotoxicity was dose-dependent, and the 0.1% CP concentration caused the most intense cytopathic effects to the MDPC-23 cells. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9013: 907-912, 2009