987 resultados para Direct-perception
Resumo:
A DC-offset cancellation scheme in the 5GHz direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard is described in this paper. It uses the analog feedback loop to eliminate the DC-offset at the output of the double-balanced mixer. The mixer has a simulation voltage conversion gain of IMB at 5.2GHz, noise figure of 9.67dB, IIP3 of 7.6dBm. The solution provides 39.1dB reduction according to the leakage value at LO and mixer load resistors, the additional noise figure added to mixer is less than 0.9dB, the added power dissipation is 0.1mW and was fabricated in 60GHz 0.35 mu m SiGe BiCMOS technology.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).
Resumo:
This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m- 3 h- 1 and 203.80 kg m- 3 h- 1 when gas hourly space velocities were 650 h- 1 and 1200 h- 1, respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H2/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO2.