1000 resultados para Cu Nanowires
Resumo:
Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.
Resumo:
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
Resumo:
Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.
Resumo:
The electronic structure and optical gain of wurtzite ZnO nanowires are investigated in the framework of effective-mass envelope-function theory. We found that as the elliptical aspect ratio e increases to be larger than a critical value, the hole ground states may change from optically dark to optically bright. The optical gain of ZnO nanowires increases as the hole density increases. For elliptical wire with large e, the y-polarized mode gain can be several thousand cm(-1), while the x-poiarized mode gain may be 26 times smaller than the former, so they can be used as ultraviolet linearly polarized lasers. (C) 2008 American Institute of Physics.
Resumo:
Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.
Resumo:
The electronic structure, Zeeman splitting, and g factor of Mn-doped CdS nanowires are studied using the k center dot p method and the mean field model. It is found that the Zeeman splittings of the hole ground states can be highly anisotropic, and so can their g factors. The hole ground states vary a lot with the radius. For thin wire, g(z) (g factor when B is along the z direction or the wire direction) is a little smaller than g(x). For thick wire, g(z) is mcuh larger than g(x) at small magnetic field, and the anisotropic factor g(z)/g(x) decreases as B increases. A small transverse electric field can change the Zeeman splitting dramatically, so tune the g(x) from nearly 0 to 70, in thick wire. The anisotropic factor decreases rapidly as the electric field increases. On the other hand, the Zeeman splittings of the electron ground states are always isotropic.
Resumo:
The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.
Resumo:
The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.
Resumo:
This letter reports on the Raman, optical and magnetic properties of FeNi co-doped ZnO nanowires prepared via a soft chemical solution method. The microstructural investigations show that the NiFe co-dopants are substituted into wurtzite ZnO nanostructure without forming any secondary phase. The co-doped nanowires show a remarkable reduction of 34 nm (267.9 meV) in the optical band gap, while suppression in the deep-level defect transition in visible luminescence. Furthermore, these nanowires exhibit ferromagnetism and an interesting low-temperature spin glass behavior, which may arise due to the presence of disorder and strong interactions of frustrated spin moments of Ni and Fe co-dopants on the ZnO lattice sites. Copyright (C) EPLA, 2009
Resumo:
The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higher T (c) useful for the nano-materials design of spintronics.
Resumo:
The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy.
Resumo:
The quantum confinement effect, electronic properties, and optical properties of TiO2 nanowires in rutile structure are investigated via first-principles calculations. We calculate the size- and shape-dependent band gap of the nanowires and fit the results with the function E-g = E-g(bulk) + beta/d(alpha). We find that the quantum confinement effect becomes significant for d < 25 angstrom, and a notable anisotropy exists that arises from the anisotropy of the effective masses. We also evaluate the imaginary part of the frequency-dependent dielectric function [epsilon(2)(omega)] within the electric-dipole approximation, for both the polarization parallel [epsilon(parallel to)(2)(omega)] and the perpendicular [epsilon 1/2(omega)] to the axial (c) direction. The band structure of the nanowires is calculated, with which the fine structure of epsilon(parallel to)(2)(omega) has been analyzed.
Resumo:
Diluted magnetic nonpolar GaN:Cu films have been fabricated by implanting Cu ions into unintentionally doped nonpolar a-plane(1 1 (2) over bar 0) GaN films and a subsequent thermal annealing process. The structural, morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The sample shows a clear ferromagnetism behavior at room temperature. It is significantly shown that with a Cu concentration as low as 0.75% the sample exhibits a saturation magnetization about 0.65 mu(B)/Cu atom. Moreover, the possible origin of the ferromagnetism for the sample was also discussed briefly. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Diluted-magnetic nonpolar GaN:Cu films have been fabricated by implanting Cu ions into p-type nonpolar a-plane (1120) GaN films with a subsequent thermal annealing process. The impact of the implantation dose on the structural. morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD). atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The XRD and AFM analyses show that the structural and morphological characteristics of samples deteriorated with the increase of implantation dose. According to the SQUID analysis. obvious room-temperature ferromagnetic properties of samples were detected. Moreover, the saturation magnetization per Cu atom decreased as the implantation dose increased. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Raman scattering and photoluminescence (PL) of boron-doped silicon nanowires have been investigated. Raman spectra showed a band at 480 cm(-1), indicating that the crystallinity of the nanowires was suppressed by boron doping. PL taken from B-doped SiNWS at room temperature exhibited three distinct emission peaks at 1.34, 1.42. and 1.47 eV and the PL intensity was much stronger than that of undoped SiNWS. The increased PL intensity should be very profitable for nano-optoelectronics. (C) 2004 Elsevier B.V. All rights reserved.